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Abstract 

This thesis examines whether the rise in U.S. tariffs between 2018 and 2025 can boost 

manufacturing employment, taking into account the growing use of industrial automation. A 

quarterly panel spanning 2004 Q1 to 2025 Q2 combines United States International Trade 

Commission duty data, International Federation of Robotics operational stock counts, and 

Bureau of Labor Statistics payrolls. Four approaches are used: Newey-West-corrected 

regressions, a three-variable vector autoregression, a synthetic-control benchmark against the 

EU-27 and Canada, and a simple welfare ledger. A one-percentage-point increase in the average 

tariff trims same-quarter job growth by about 0.44 log points (p ≈ .06). The VAR shows a brief 

hiring bump that fades within three years and robot installations increase. Interaction terms 

indicate that sectors in the top quartile of automation turn the small tariff gain into a net loss. 

Relative to the synthetic counterfactual, U.S. factories employed roughly 260,000 fewer workers 

by mid-2025. The welfare ledger records $53 billion in tariff revenue, $80 billion in consumer 

surplus loss, and $18 billion in wage gains, leaving an $8 billion deficit. Public cost per job tied 

to the tariff cycle is approximately $149,000, more than ten times the § 48C investment-credit 

benchmark. Broad, non-specific tariffs are an expensive route to job creation when automation 

momentum is strong. Targeted investment support and skills policies promise better employment 

outcomes at a lower fiscal cost. 

 

 

 

 

 

 

 

 

 



5 

 

Table of Contents 

List of Tables ................................................................................................................................... 8 

List of Figures ................................................................................................................................. 9 

Chapter 1: Introduction ................................................................................................................. 10 

1.1 Context and Motivation ...................................................................................................... 10 

1.2 Puzzle and Research Question .............................................................................................11 

1.3 Policy Timeline ................................................................................................................... 13 

1.4 Contribution and Roadmap ................................................................................................. 15 

Chapter 2: Literature Review ........................................................................................................ 16 

2.1 Trade-Induced Labor-Market Adjustment .......................................................................... 16 

2.2 Automation and Employment Elasticities........................................................................... 17 

2.3 Joint Trade x Automation Studies ....................................................................................... 19 

2.4 Gaps the Thesis Fills ........................................................................................................... 20 

Chapter 3: Methodology ............................................................................................................... 22 

3.1 Data Sources and Variable Construction............................................................................. 22 

3.2 Econometric Techniques ..................................................................................................... 23 

3.3 Descriptive Benchmarks ..................................................................................................... 25 

3.4 Limitations .......................................................................................................................... 27 

Chapter 4: Baseline Results .......................................................................................................... 29 

4.1 Baseline Time-Series Regression Result ............................................................................ 29 

4.2 Dynamic Path ...................................................................................................................... 30 

4.3 Robustness Checks ............................................................................................................. 34 

Chapter 5: Automation Interaction & Heterogeneity .................................................................... 36 

5.1 Tariffs & Robots Interaction ............................................................................................... 36 

5.2 Marginal tariff effect across robot-adoption levels ............................................................. 38 



6 

 

5.3 Skill-Composition Effects ................................................................................................... 38 

5.4 Discussion and Take-Aways ............................................................................................... 41 

Chapter 6: Trade-Demand Channel .............................................................................................. 43 

6.1 China-Export Collapse as Mediator of the Tariff Shock ..................................................... 43 

6.2 Robots, Tariffs, and Exports Overtime ............................................................................... 45 

6.3 Where Reshoring Starts: Source-Country Snapshot ........................................................... 46 

6.4 Discussion and Policy Takeaways ...................................................................................... 47 

Chapter 7: External Validity .......................................................................................................... 49 

7.1 Synthetic-Control Construction .......................................................................................... 49 

7.2 U.S. vs Synthetic Employment Gap ................................................................................... 50 

7.3 Automation Risk and Job Growth ....................................................................................... 52 

7.4 Takeaways and Caveats ...................................................................................................... 54 

Chapter 8: Welfare & Policy ......................................................................................................... 55 

8.1 Welfare-Ledger Framework ................................................................................................ 55 

8.2 Numerical Results ............................................................................................................... 56 

8.3 Visual Summary .................................................................................................................. 58 

8.4 Dollars Per Job: Tariffs vs § 48C ........................................................................................ 59 

8.5 Robot Dividend Caveat ....................................................................................................... 61 

Chapter 9: Conclusion................................................................................................................... 63 

9.1 Revisiting the Research Question ....................................................................................... 63 

9.2 Core Findings ...................................................................................................................... 63 

9.3 Contribution to Existing Work ............................................................................................ 65 

9.4 Policy Ledger Recap ........................................................................................................... 66 

9.5 Future Research .................................................................................................................. 66 

9.6 Closing Remark .................................................................................................................. 67 



7 

 

References ..................................................................................................................................... 68 

Appendix A ................................................................................................................................... 78 

Appendix B ................................................................................................................................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

List of Tables 

Table 1 ........................................................................................................................................... 29 

Table 2 ........................................................................................................................................... 34 

Table 3 ........................................................................................................................................... 36 

Table 4 ........................................................................................................................................... 39 

Table 5 ........................................................................................................................................... 43 

Table 6 ........................................................................................................................................... 46 

Table 7 ........................................................................................................................................... 49 

Table 8 ........................................................................................................................................... 56 

Table 9 ........................................................................................................................................... 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

List of Figures 

Figure 1 ......................................................................................................................................... 12 

Figure 2 ......................................................................................................................................... 18 

Figure 3 ......................................................................................................................................... 25 

Figure 4 ......................................................................................................................................... 26 

Figure 5 ......................................................................................................................................... 31 

Figure 6 ......................................................................................................................................... 33 

Figure 7 ......................................................................................................................................... 40 

Figure 8 ......................................................................................................................................... 45 

Figure 9 ......................................................................................................................................... 51 

Figure 10 ....................................................................................................................................... 53 

Figure 11 ....................................................................................................................................... 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Chapter 1: Introduction 

1.1 Context and Motivation 

The United States manufacturing industry employs far fewer people than it did a 

generation ago (Harris, 2020). Payrolls peaked at 19.5 million in June 1979 and stood near 12.5 

million in mid-2025, a fall of about one-third (U.S. Bureau of Labor Statistics, 2025b). Over the 

same period, the median hourly wage for production and nonsupervisory factory workers has 

increased by 3%, and five Midwestern states have lost over a quarter of their industrial 

employment (U.S. Bureau of Labor Statistics, 2025b). Researchers attribute a significant part of 

the initial decline to competition in imports, particularly those from East Asia (D. Autor et al., 

2021). 

The trade debate is now defined by fragility rather than wages. Weaknesses in global 

supply chains were exposed after port closures and global semiconductor shortages during the 

COVID-19 pandemic, as well as shipping disruptions after Russia’s invasion of Ukraine and 

Houthi attacks on shipping vessels in the Red Sea. AlixPartners estimates that the auto industry 

lost more than $200 billion in revenue during the chip crisis (Yost, 2021). Spot rates for a forty-

foot container from Shanghai to Los Angeles reached about $10,000 in late 2021, six times the 

pre-pandemic average (Drewry, 2025). These shocks convinced many policymakers that import 

dependence can carry heavy macroeconomic and political risks. 

President Donald J. Trump returned to office on January 20th, 2025, arguing that trade 

imbalances threaten national security. Trump’s “America First” trade policy ordered agencies to 

enforce stricter border control measures (The White House, 2025a). Executive Order 14257 of  

April 2nd set a 10% ad-valorem duty on nearly all imports (Executive Order 14257, 2025). In 

March, a complementary schedule increased tariff rates on Canada and Mexico to 25% and 

added 24 percentage points on Chinese goods, raising its combined rate to 34% (Executive Order 

14257, 2025). On May 12th, Executive Order 14298 suspended the China add-on for ninety days 

until August 12th while negotiations continue (Executive Order 14298, 2025). Earlier Section 301 

tariffs on China of 7.5% to 25% remain, as do a 20% duty on fentanyl-chain chemicals and a 

100% tariff on electric vehicles (Lowell et al., 2025). Most Chinese shipments face duties of 

nearly 40% and may reach 60% if the negotiations fail (Jackson, 2025). On May 28th, the U.S. 

Court of International Trade declared the worldwide tariff unlawful under the International 
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Emergency Economic Powers Act, however, the government immediately appealed the decision, 

leaving collection in place during review (V.O.S. Selections, Inc. V. United States, 2025). Similar 

fiscal incentives, the 2022 CHIPS and Science Act, the § 45X Advanced-Manufacturing Credit 

authorized in December 2024, and the § 48C Qualifying Advanced Energy Project Credit are all 

meant to encourage production in the United States (U.S. Department of Energy, 2024; U.S. 

Department of the Treasury, 2025). 

While policy aims to reshore manufacturing and boost employment, automation 

technology reduces labor demand in new production plants. The International Federation of 

Robotics estimates 590,000 new industrial-robot installations worldwide in 2024 and a global 

installed base of about 4.3 million units (Bill et al., 2024). Robot density in U.S. factories 

reached 295 robots per 10,000 manufacturing workers in 2023 (Bill et al., 2024). Adoption now 

reaches small shops, as a survey by the Association for Advancing Automation finds 38% of U.S. 

metal-fabrication plants testing AI-guided welding cells in 2025, compared to 9% in 2020 (Rose 

& Schimmel, 2025). U.S. Labor productivity in manufacturing has climbed 24% since 2010 as 

well (U.S. Bureau of Labor Statistics, 2025e). 

Tariffs raise the cost of imported goods and may encourage firms to reshore production. 

However, most of these investments flow into highly automated lines with fewer employees. The 

2025 tariff cycle and the increase in automation raises the question: can tariff increases produce 

net hiring gains that exceed the jobs displaced by machines?  

1.2 Puzzle and Research Question 

Announced reshoring and foreign direct investment projects have risen sharply during the 

past three years. The Reshoring Initiative 2024 annual report shows a trend of U.S. factory jobs 

increasing over the past decade, then decreasing from 2022 to 2024, as seen in Figure 1 

(Reshoring Initiative, 2025).  
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Figure 1 

Reshoring and FDI Job Announcements by Year in the United States, 2010 - 2024 

 

Note. Annual totals represent the number of manufacturing jobs announced by companies 

undertaking either domestic reshoring or inward FDI projects. Adapted from Reshoring 

Initiative® 2024 Annual Report, Including 1Q 2025 Insights (p. 4), Reshoring Initiative (2025), 

retrieved June 12, 2025. Copyright 2025 by the Reshoring Initiative.  

While Figure 1 depicts jobs announced, payroll data on actual hires from the Bureau of 

Labor Statistics show a much lower count. From January 2022 to March 2025, only about 96,000 

net production-line hires were reported, although the first wave of plant announcements entered 

construction (U.S. Bureau of Labor Statistics, 2025c). The gap between the projected and real 

jobs has thereby increased. 

In modern trade analysis, the two mutually reinforcing mechanisms are often referred to 

by scholars as the basis of labor-market outcomes. One view holds that higher tariff rates shift 

labor-intensive stages of production back to the tariff-imposing country (Osnago et al., 2015). A 

second view argues that new capital is largely labor-saving, as robots and AI replace many tasks 
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that once required human operators (Acemoglu & Restrepo, 2020). These are not mutually 

exclusive forces: reshored jobs can grow as well as the adoption of labor-saving technology. The 

net employment impact is determined on whether the scale effect from reshored output 

outweighs the labor-saving bias of automation embedded in new plants. 

Research question. Does the escalation of U.S. manufacturing tariffs implemented between 

2018 and 2025 deliver net gains in domestic manufacturing employment when rising industrial 

automation adoption is taken into account? 

To answer this question, the research design must be able to distinguish between policy 

shocks and technological trends. The thesis treats the tariff implementation dates as natural 

experiments described in Section 1.3. Industries differ in their exposure because their input 

mixes vary across trading partners. At the same time, industries vary in their use of robots. By 

interacting the tariff indicator with a continuous measure of installed robots per thousand 

workers, the empirical strategy tests whether higher automation mitigates, neutralizes, or even 

reverses any employment boost that follows the tariff shock. Three main sources of data used in 

the analysis include: (1) monthly, quarterly, and yearly records of overall tariff rates calculated 

from the U.S. International Trade Commission, (2) International Federation of Robotics 

operational stock measures, and (3) monthly, quarterly, and yearly manufacturing employment 

and wage records from the BLS Census of Employment and Wages. 

The next subsection outlines the tariff timeline in detail and explains why the staggered 

dates provide statistical leverage. The following chapters describe the data assembly process, and 

the identification tests used to address potential biases such as pre-trend differences and spatial 

correlation in robot adoption. 

1.3 Policy Timeline 

United States trade policy has occurred in two distinct phases since 2018. The first began 

on March 8, 2018, when Presidential Proclamations 9704 and 9705 placed ad-valorem safeguard 

duties of 10% on most aluminum imports and 25% on most steel imports (Proclamation 9705, 

2018; Proclamation 9705, 2018). The Office of the United States Trade Representative issued 

four Section 301 lists over the next 18 months that imposed duties of 7.5% to 25% on over $300 

billion of Chinese goods, and Proclamation 9980 of January 24, 2020, extended the metal duties 
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to selected downstream items such as nails and cable (Proclamation 9980, 2020; Office of the 

United States Trade Representative, 2020). These actions raised costs for targeted products 

without changing a significant portion of the domestic tariff regime. A detailed timeline of all 

recorded acts, their legal basis, and the dates customs collection began is shown in Appendix A, 

Table A1. 

A broader second phase followed President Trump’s return to office on January 20, 2025. 

The America First Trade Policy memorandum released that day instructed executive agencies to 

design a “reciprocal tariff” (The White House, 2025a). On February 1, 2025, the White House 

announced a 25% surcharge on most Canadian and Mexican goods, a 10% levy on Chinese 

cargo, and a plan to collect the China duty three days later (The White House, 2025b). Customs 

and Border Protection began that collection at 00:01 EST on February 4, 2025; the North 

American surcharge started at 00:01 EST on March 4, 2025. Executive Order 14257, signed on 

April 2, 2025 and published in the Federal Register on April 7, 2025, replaced partner-specific 

surcharges with a universal 10% duty that Customs applied from 00:01 EDT on April 5, 2025 

(Executive Order 14257, 2025; U.S. Customs and Border Protection, 2025). The order also 

authorized additional mark-ups that would have lifted the China rate to 34% and raised Canada 

and Mexico to 25%. 

Executive Order 14298, issued on May 12, 2025, suspended 24 percentage points of the 

proposed China mark-up for ninety days, keeping only the 10% baseline in force through August 

12, 2025, as Washington and Beijing negotiate (Executive Order 14298, 2025). Earlier Section 

301 duties, a 20% levy on chemicals linked to synthetic opioids, and a 100% tariff on electric 

vehicles remain in place, so many Chinese consignments already face combined rates close to 

30%. Reuters estimates that the figure would exceed 60% if the suspension ends without 

agreement (Jackson, 2025; Lowell et al., 2025). On May 28, 2025, the United States Court of 

International Trade issued a preliminary injunction that questions the use of the International 

Emergency Economic Powers Act for the universal duty, yet the government’s immediate appeal 

allows Customs to continue collection during review (V.O.S. Selections, Inc. V. United States, 

2025). These staggered collection dates create separate cost shocks across industries, depending 

on their reliance on Canadian, Mexican, or Chinese inputs.  
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1.4 Contribution and Roadmap 

This study speaks to three strands of research. A trade-and-labor work study has been 

conducted on how import shocks reshape local job markets (D. H. Autor et al., 2013). Another 

recent study examines how robots affect wages and employment (Acemoglu & Restrepo, 2020). 

A third study tracks policy uncertainty and investment plans, often without detailed data on 

technology intensity (Osnago et al., 2015). Merging International Federation of Robotics 

operational stock figures with a hand-coded tariff-exposure index from USITC data and U.S. 

manufacturing employment totals from BLS databases, this thesis tests whether a broad border 

tax can reduce or increase manufacturing employment once robot density is considered.  

Chapter 2 reviews theoretical channels that link tariffs, relocation, and automation. 

Chapter 3 describes the data, explains the construction of the tariff and robot variables, and 

outlines summary statistics. Chapter 4 introduces the national quarterly time-series regression 

that anchors empirical analysis. Chapter 5 presents baseline estimates and a series of robustness 

tests, including alternative timing windows and placebo treatments applied to pre-policy years. 

Chapter 6 examines heterogeneity, asking which industries and regions gain or lose under 

different automation thresholds. Chapter 7 draws policy lessons for lawmakers debating 

permanent reciprocal-tariff authority and suggests extensions, such as the role of generative 

design tools that may speed capital-labor substitution. 
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Chapter 2: Literature Review 

Global supply chains remain vulnerable after successive crises, yet the United States is 

creating new tariff barriers. In early 2025, the Trump Administration extended Section 301 duties 

to an average of 18% across electronics, machinery, and metals. Domestic manufacturers face 

that policy in workplaces already shaped by industrial robots: by 2024, the stock exceeds 

400,000 units, double the 2015 level (Müller, 2024). Studies show that robots reduce routine jobs 

and that import competition reallocates employment away from manufacturing (Acemoglu & 

Restrepo, 2020; D. H. Autor et al., 2013). However, it’s not clear how tariffs imposed in a high-

automation era can reverse those losses. This chapter reviews the evidence on trade shocks, 

automation, and their interaction. 

2.1 Trade-Induced Labor-Market Adjustment 

Since the mid-1990s, extensive empirical literature has recorded how import competition 

restructures employment across advanced economies. The China shock study shows that U.S. 

commuting zones more exposed to Chinese imports recorded slower job growth, lower earnings, 

and higher disability claims between 1990 and 2007 (D. H. Autor et al., 2013). Similar patterns 

appear in Germany, where localities with high import penetration lost industrial jobs yet gained 

few service positions (Dauth et al., 2014), and in the United Kingdom, where most exposed 

plants experienced reduced wages and weaker productivity growth (Bloom et al., 2016). Across 

the OECD, import penetration rose from 15% of domestic demand in 1995 to 26% by 2015, with 

the largest increases in electronics and machinery (OECD, 2021). Even in smaller open 

economies, such as Denmark and Portugal, workers displaced by import surges do so gradually 

and continue to receive wage reductions (Balsvik, 2011; Caselli et al., 2020). 

Two main mechanisms drive these outcomes. Imports displace labor-intensive domestic 

production, and surviving firms reorient toward capital or skill-intensive activities that require 

fewer routine workers (Bernard et al., 2003). Because mid-career earnings are tied to task-

specific experience, workers forced to switch industry often suffer drawn-out wage losses and 

reduced labor-force attachment (Hakobyan & McLaren, 2016). Programs such as Trade 

Adjustment Assistance offer retraining and income support, yet participation is low, and 

measured re-employment gains are modest (Houseman, 2018). Migration toward expanding 
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regions helps some displaced workers, but overall population flows are too slow to offset job 

displacement within a typical five-year cycle (Monras, 2020).  

Evidence to date is mixed on whether higher tariff rates can restore manufacturing jobs. 

The 2002 U.S. safeguard on steel briefly increased domestic output but raised input costs for 

metal-using industries, cutting employment more than the steel sector gained (Pierce & Schott, 

2016). Earlier voluntary export restraint episodes show equally smaller job creation once later 

effects are considered (Elliott & Hufbauer, 2016). Trade protection may move jobs from one 

industry to another, still it rarely increases the country’s total employment unless supply chains 

are already domestic. The overall impact of automation on labor performance in the face of 

emerging trade barriers remains an open empirical question. 

2.2 Automation and Employment Elasticities 

Global robot installations have grown by an average of 11% per year since 2010, lifting 

the active stock to more than 3.9 million units, with the United States containing roughly 414k 

by 2024 (Bill et al., 2024; Müller, 2024). Robots are primarily concentrated in automotive and 

electronics manufacturing, yet food-processing plants now equip collaborative arms with AI 

vision systems. Automotive plants now operate with approximately 1,290 robots per 10,000 

workers, compared with 260 in fabricated metals and fewer than 80 in food processing (Müller, 

2024). This dispersion shapes estimated employment elasticities because robots replace routine 

manual tasks while supporting high-skill maintenance positions, and productivity gains can 

coincide while increasing wage gaps (Frey & Osborne, 2017). Studies centered on high-density 

sectors tend to report larger job losses, where Appendix A, Table A3 summarizes the main causal 

β estimates in the following analysis. 

Early cross-country panels find little aggregate impact on hours worked (Graetz & 

Michaels, 2018). Within the United States, Acemoglu and Restrepo (2020) estimate that an extra 

robot per 1,000 workers reduces the employment-to-population ratio by nearly 0.34 percentage 

points. A recent study covering 2005-2016 finds initial job losses are later replaced, yielding a 

net gain of roughly 15 jobs per robot (Chung & Lee, 2022). European region-industry panels 

record approximate losses of about 0.18 points (Chiacchio et al., 2018), whereas a decomposition 

for the EU-27 implies a small aggregate gain once demand spill-overs are accounted for (Zierahn 
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et al., 2016). Across studies, most β’s fall between −0.34 pp1 and +16 jobs, with identification 

strategy and task mix explaining much of the spread. 

Figure 2 

The Five Levels of Robot Autonomy 

 

Note. Adapted from Position Paper: Artificial Intelligence in Robotics (p. 7), International 

Federation of Robotics (2022), retrieved June 10, 2025. Copyright 2022 by the International 

Federation of Robotics.  

Heterogeneity arises not only from the identification strategy but also from the capacity 

of robots to operate with different autonomy levels. Figure 2 shows the International Federation 

of Robotics’ five-tier schema, ranging from fully manual control to advanced AI that adapts to 

changing environments. Higher tiers lift productivity yet require fewer operators per unit of 

output, implying steeper employment elasticities as plants move up the autonomy ladder 

(International Federation of Robotics, 2022). This transition up the autonomy ladder has been 

accelerated by falling adoption costs, as average list prices declined by 38% between 2010 and 

 
1 pp = percentage point change 
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2022, and tax incentives such as U.S. §45X credits now subsidize capital deepening 

(International Federation of Robotics, 2022; U.S. Department of the Treasury, 2025). Plants that 

enter the autonomy frontier re-allocate labor toward programming, maintenance, and analytics, 

while routine assemblers face displacement (Chung & Lee, 2022). These dynamics frame the 

central question of this thesis: Can a tariff shock introduced during a period of rapid robot 

upgrading still generate a net manufacturing-employment gain? The next section reviews studies 

that examine trade and automation together. 

2.3 Joint Trade x Automation Studies 

U.S. studies show that import competition and automation frequently amplify each 

other’s labor effects. Across 722 commuting zones from 1990 to 2007, each additional robot per 

1,000 workers lowered the employment-to-population ratio by up to 0.34 percentage points, with 

the largest declines in zones experiencing faster growth in Chinese imports (Acemoglu & 

Restrepo, 2020). Extending the window to 2016 and interacting import exposure with subsequent 

robot diffusion, one study finds that a one-standard-deviation rise in import competition 

combined with above-median robot growth cuts manufacturing employment 1.1 percentage 

points, nearly double the simple sum of the separate shocks (Galle & Lorentzen, 2024). 

Skill composition sharpens that interaction. In commuting zones whose pre-shock STEM 

share sits in the top quintile, value added per worker rises 4% and employment remains flat; in 

low-skill zones, employment drops almost two percentage points (Galle & Lorentzen, 2024). 

Plant-level evidence mirrors this split. Using longitudinal manufacturing micro-data, another 

study shows that U.S. establishments with higher shares of technicians adopt robots more 

aggressively yet experience no significant job loss, whereas plants with routine-task 

specialization shed employment even as output is maintained (Acemoglu et al., 2020). 

Tariff episodes repeat the pattern. The 2002 steel safeguard raised domestic steel prices 

but also spurred downstream metal-using counties to adopt robots; those counties lost more 

manufacturing jobs over 2002-2006 yet posted larger productivity gains than comparable areas 

with slower automation (Pierce & Schott, 2016). A second natural experiment comes from the 

2018 washing-machine tariff, finding that white-goods plants importing new assembly robots 

between 2017 and 2020 cut direct-labor positions by roughly 5% while raising output per worker 

7% (Flaaen et al., 2020). 
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Comparative evidence suggests the mechanism is not uniquely American. French 

manufacturing plants exposed to larger increases in Chinese import penetration between 1995 

and 2007 increased robot density by 9% and reduced employment by 2%, without lowering 

value added per worker (Acemoglu et al., 2020). Although institutional settings differ, the 

direction of the effect matches U.S. findings, strengthening external validity. 

Macro simulations support these patterns. A general equilibrium model calibrated to the 

U.S. finds that trade shocks, such as tariffs on electronics, can lead firms to substitute capital for 

labor, moderating or even reversing employment gains in manufacturing (Boer & Rieth, 2024). 

Scenario analysis for industry stakeholders’ projects that by 2028, as much as 70% of tasks in 

reshored U.S. electronics could be automated with existing technology, capping net job gains 

from tariffs below 40,000 positions (World Economic Forum, 2025). 

Implication for this thesis. Taken together, U.S. plant, county, and macro evidence 

implies that trade barriers introduced in a high-automation era rarely raise aggregate 

manufacturing employment unless paired with incentives that favor labor-complementary tools 

such as AI-guided inspection systems.  

2.4 Gaps the Thesis Fills   

As of 2025, reshoring is shaped by two concurrent shifts: a sharp rise in trade barriers and 

rapid adoption of AI-enabled automation. In March 2025, the United States raised average duties 

to 25% on imports from Canada and Mexico and imposed a 10% blanket rate on Chinese goods 

(The White House, 2025b). At the same time, global sales of industrial service robots jumped 

almost 50%, reflecting widespread uptake of advanced machinery (Parks, 2021). This tariff-

automation mix has no close precedent in the academic record. 

Most empirical work on U.S. protectionism stops before industrial AI became 

mainstream. Studies of the 2002 steel safeguard and the initial 2018 Section 301 duties examine 

periods when collaborative robots and predictive software were less prevalent. The literature, 

therefore, cannot speak to employment outcomes once high tariffs meet mature automation. 

Timing is another blind spot, as existing analyses usually compare headcounts a year or more 

before and after a tariff change; few track quarter-by-quarter responses while firms reorder 
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capital plans. Without that detail, short hiring bursts can be mistaken for durable gains, and 

delayed job losses may go unnoticed. 

Heterogeneity also receives limited attention, as robot density varies widely across 

industries, yet most evaluations apply a single treatment effect to manufacturing as a whole. 

Evidence suggests that automation dampens any labor boost from protection, but no study has 

quantified how the tariff effect changes along the full distribution of robot use (Firooz et al., 

2024; OECD, 2023a). Distributional and welfare channels remain largely separate from 

employment research, as estimates of consumer costs under broad tariffs exist (Long, 2019) and 

separate projections describe wage shifts under automation (Favilla & Chandrasekaran, 2024). 

However, these two strands are rarely combined to assess whether jobs created or lost may come 

at an acceptable social price. 

The chapters that follow address those questions by combining high-frequency trade, 

technology, and labor series, allowing a closer look at dynamic, industry-specific, and 

distributional effects that earlier work could not observe. This design allows identification of 

near-term spikes, medium-term reversals, and variations linked to technology intensity, while 

maintaining the welfare dimension in view for a more comprehensive assessment of modern 

reshoring policy. 
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Chapter 3: Methodology 

3.1 Data Sources and Variable Construction 

The analysis draws on U.S. data covering 2004 Q1-2025 Q2. Each series was 

downloaded from its source in the time frequency that best served the specific figure, table, or 

regression. Quarterly files underpin the baseline econometric work; monthly or annual files are 

used where a finer or longer-run view is helpful. See Appendix A, Table A2 for a full list of the 

variables used throughout the thesis. 

Total manufacturing employment comes from the (MANEMP) series at the Federal 

Reserve Bank of St. Louis (U.S. Bureau of Labor Statistics, 2025a). Monthly observations are 

seasonally adjusted by the source. The dependent variable is the log first-difference of the 

monthly series, later aggregated to quarters for the baseline equation. When plant-level or skill-

share splits were required, matching totals from the Bureau of Labor Statistics Current 

Employment Statistics were used; the two measures move almost identically (U.S. Bureau of 

Labor Statistics, 2025b). When comparing total manufacturing employment between different 

nations in Chapter 7, employment by sector data was pulled from OECD Data Explorer (OECD, 

2025). The OECD Programme for the International Assessment of Adult Competencies (PIAAC) 

database was used for finding automation risk of manufacturing jobs in different nations (OECD, 

2023b).  

Trade policy exposure is captured by effective tariff rates derived from the U.S. 

International Trade Commission DataWeb (U.S. International Trade Commission, 2025b). For 

every release the value of collected duties is divided by the corresponding customs value, 

yielding a duty-to-value ratio. Separate tables were downloaded at monthly, quarterly, and annual 

resolution. Two aggregates are retained: a world-weighted rate and a China-specific rate. The 

main regressor is the percentage-point change in the world series, ∆𝑇𝑎𝑟𝑖𝑓𝑓𝑅𝑎𝑡𝑒𝑡.2 When 

Chapter 7 measured total average tariffs placed on the U.S. by other foreign countries, the model 

used MFN applied tariffs by UNCAD TRAINS (World Bank, 2025). 

 
2 Units. Tariff change = percentage points (pp); employment growth = log points × 100; robot stock change = log 

points. 



23 

 

Annual operational-robot counts were provided directly by the International Federation of 

Robotics (International Federation of Robotics, 2025). Regressions use the natural log of the 

annual stock, ln(𝑅𝑜𝑏𝑜𝑡𝑆𝑡𝑜𝑐𝑘𝑡). Quarterly values were needed only for Table 3, Table 5, and 

Figure 6; a monotone spline filled the three intermediate quarters in each year. Counts for 2024 

and 2025 were taken from the IFR 2024 press presentation and the 2024 annual report, 

respectively. 

Macro conditions and labor-market structure appear in a compact control vector. The 

monthly industrial-production index (INDPRO) and the unemployment rate (UNRATE), both 

from FRED, proxy aggregate demand and slack (Board of Governors of the Federal Reserve 

System (US), 2025; U.S. Bureau of Labor Statistics, 2025d). Export re-orientation is measured 

with monthly USITC data on domestic exports; a China series is subtracted from the world 

aggregate to obtain a rest-of-world measure (U.S. International Trade Commission, 2025a). 

Structural labor-market composition is captured with annual skill-share series constructed 

from BLS OEWS micro-data (U.S. Bureau of Labor Statistics, 2024). Every six-digit SOC 

occupation in manufacturing (NAICS 31-33) is mapped to an O*NET Job Zone (National Center 

for O*NET Development, 2023); Job Zones 1–2 are coded as low-skill, Zone 3 as middle-skill, 

and Zones 4–5 as high-skill. A few of the models contain quarterly dummies isolate the 2020 Q2-

Q4 pandemic shock. 

All monetary series were deflated to 2025 dollars with the Bureau of Economic Analysis 

implicit GDP deflator (U.S. Bureau of Economic Analysis, 2025). Data aggregation was done in 

Python (pandas); statistical estimation used R (fixest, tidyverse), and tables as well as a few 

figures were finalized in Excel for presentation clarity. 

3.2 Econometric Techniques 

Quarterly first-difference ordinary least squares provide the baseline measurement of how 

tariff changes affect manufacturing employment. Table 1 reports the estimates for 

2005 Q1-2025 Q4. The specification includes the change in the average applied tariff rate, the log 

industrial production index, the unemployment rate and a COVID-19 indicator. Standard errors 

are heteroskedasticity- and autocorrelation-consistent with a six-lag Bartlett kernel, and the 

Cumby–Huizinga statistic confirms that no residual serial correlation remains (Cumby & 
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Huizinga, 1990; Newey & West, 1986). Figure 5 plots month-indexed coefficients around the 

April 2025 reset, verifying a flat pre-trend with the same estimation settings. 

Dynamic feedback among employment, robot installations and the tariff rate is examined 

with a three-variable vector autoregression. The Akaike information criterion selects two lags. 

Generalized impulse responses trace the effect of a one-standard-deviation tariff increase for 

twelve quarters, and confidence bands come from one thousand bootstrap resamples (Pesaran & 

Shin, 1998). The resulting paths appear in Figure 6. 

Table 2 tests whether the baseline result depends on contemporaneous measurement by 

adding six quarterly lags of the tariff term while retaining the Newey–West covariance. 

Coefficients on the first two lags carry most of the weight, indicating that the response is largely 

complete within half a year. 

The next step lets automation condition the tariff effect. The change in log robot stock 

and its interaction with the tariff term enter the equation, which is estimated with the fixest 

package for efficient within transformation and the same heteroskedasticity-autocorrelation 

correction (Bergé, 2018). Estimates are presented in Table 3, and Figure 7 shows how the 

marginal tariff effect rises with observed robot growth. To reveal distributional patterns, the 

interaction model is re-estimated for low-, middle- and high-skill employment. Job-zone 

classifications from O*NET define the three groups. Table 4 lists the three coefficient sets, while 

Figure 7 visualizes the effects on high-skill employment (Appendix B, Figures B3 and B4 

contain effects on low- and medium-skill employment).  

A possible demand channel is evaluated by adding China-specific and rest-of-world 

export growth rates to the interaction specification. If the tariff coefficient shrinks once export 

terms enter, lost demand is transmitting the shock. Table 5 carries the estimates and Figure 8 

displays the four series that motivate the test. 

Macro validation comes from a synthetic control that blends the European Union and 

Canada so their weighted average matches United States means of employment, robot stock and 

tariff openness during 2005-2017. The post-2018 gap acts as a counterfactual employment path 

(Abadie et al., 2007) and is plotted in Figure 9 and Figure 10.  
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Finally, Table 8 balances tariff revenue, consumer surplus loss and the wage-bill change, 

using a demand elasticity of −1.5, to give the annual welfare account, where Section 8.1 contains 

more detail on this method. Figure 11 stacks the three components to visualize the net position 

over 2018-2025. 

The econometric design relies on three core inputs: industrial robot density, the average 

applied tariff rate, and a trade-weighted tariff index. To give context before these variables enter 

the regressions, the next section documents their distribution across countries and over time, 

showing where the United States stands on each measure.  

3.3 Descriptive Benchmarks 

Figure 3 

Robot density in the manufacturing industry, 2023

 

Note. Bar chart of robots installed per 10,000 manufacturing employees in the 25 leading 

countries. World average = 162. Regional averages: EU (219), North America (197), Asia (182). 

Adapted from Global robot density in factories doubled in seven years, press release by the 

International Federation of Robotics (2024), retrieved June 10, 2025. Copyright 2024 by the 

International Federation of Robotics.  
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Figure 3 plots robot density in 2023 for the twenty-five leading manufacturing countries. 

The United States operated 295 robots per 10,000 manufacturing workers, placing it tenth. Korea 

tops the table at 1,012 units, followed by Singapore (770), China (470), Germany (429) and 

Japan (419). The United States sits well above the global mean yet far below the frontier group, 

confirming it as a mid-range adopter rather than a laggard or leader (International Federation of 

Robotics, 2024). 

Robot density shapes how any tariff shock translates into head-count. Plants in Korea and 

Singapore already run with high capital intensity, so extra demand mostly raises output per 

worker. U.S. factories retain more scope for labor expansion because baseline density remains 

moderate. This observation guides the interaction terms in the econometric design. 

Figure 4 

Effective U.S. tariff rates on Chinese and world imports, 2018 Q1-2025 Q2 

 

Note. Duty-to-customs-value ratios. Quarterly observations; shaded vertical line in 2025 Q2 

marks the policy reset. The Y-axis indicate tariff rates (%) and the X-axis indicate quarters.  
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Data based on calculations using information retrieved from USITC DataWeb, accessed 9 June 

2025. 

Figure 4 traces effective ad-valorem tariff rates from 2018 Q1 to 2025 Q2. Until the first 

Section 301 lists took effect in 2018, U.S. duties on Chinese and world imports moved together 

at roughly 2%. China specific measures then lifted its rate to about 7% by 2019 Q3. The 2025 

package pushed the Chinese line near 40% while the world average rose only to 9% (U.S. 

International Trade Commission, 2025b). The widening wedge signals a targeted policy rather 

than a general shift in protection. 

The appendix repeats the tariff plot with Canada and Mexico added (see Appendix B, 

Figure B1). Both partners remain below 3% throughout, providing a clean placebo set for later 

falsification tests. Together, the stark automation gap and the highly focused tariff shock justify 

the interaction terms in the baseline econometric design. 

Figure 3 and Figure 4 show how the U.S. combines mid-level automation with an 

aggressive, China-focused tariff surge. The United States runs far fewer robots than the frontier 

but still more than the typical economy, so new plants may add workers before capital deepening 

catches up. At the same time, the tariff schedule creates a sizeable cost shock concentrated on a 

supplier. The next subsection checks that every series is observed for all 86 quarters from 2004 

Q1 to 2025 Q2 and flags the few cases that needed interpolation or trimming before estimation. 

3.4 Limitations 

This section reviews four limitations that likely pull the results toward understatement. 

Two arise from measurement error in the robot and tariff series, while the other two explain the 

timing and volatility of the trade policy itself. Each limitation is treated in turn, so the reader can 

judge how data revisions or future policy shifts might affect the estimates reported in Chapters 4-

7. 

Robot stock data are quarterly estimates built from annual IFR operational-stock counts 

that have been linearly interpolated. Vendor self-reporting may omit retirements or transfers, 

which introduces classical measurement error and pushes the tariff-by-robot coefficient toward 

zero; any employment effects in Chapters 4–6 are therefore conservative lower bounds 

(International Federation of Robotics, 2025). 
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The robot-density series is calculated by dividing the same IFR stock counts by BLS 

manufacturing employment for each year, then linearly interpolating to quarters (see Figure 7 

and Appendix B, Figures B3 and B4). Because the denominator differs slightly from the full-

time-equivalent head-count used in IFR’s 2023 league table, the author-derived U.S. figure for 

2023 (≈ 289 robots per 10,000 workers) is about 2% below the official 295 value (International 

Federation of Robotics, 2025; Müller, 2024; U.S. Bureau of Labor Statistics, 2025a). The 

difference is well inside the typical revision band but still adds classical measurement noise that 

can attenuate correlations with skill shares.  

Average ad-valorem tariff rates come from HS-10 duties in USITC DataWeb, weighted 

by prior-year import values. Coding lags for exclusions, reclassifications, and duty suspensions 

can blur the size and timing of the 2025 shock, which attenuates both the direct tariff coefficient 

and its interaction with robots (U.S. International Trade Commission, 2025b). Trade policy 

remains in flux, so any forecast in Chapters 4–7 should be read as conditional on the duty 

schedule observed in 2025 Q2. 

Finally, the baseline 10% duty is still in force, yet the planned surcharges of 25% to 34% 

are paused until at least August 2025. A reinstatement or further delay would change the effective 

tariff shock. The projections in Chapters 4-7 are conditional on the policy mix observed in 2025 

Q2. Later updates will be needed if that mix changes. 
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Chapter 4: Baseline Results 

4.1 Baseline Time-Series Regression Result 

The analysis uses a balanced national quarterly series covering 2008 Q1-2025 Q2. 

Quarter fixed effects absorb nationwide shocks and seasonality. The dependent variable is the 

first difference of the natural log of manufacturing employment; right-hand-side variables 

include the change in the world average tariff rate, the industrial production index, the civilian 

unemployment rate and a pandemic-period dummy (2020 Q2-2021 Q1). Heteroskedasticity- and 

autocorrelation-consistent standard errors use six Newey-West lags, matching the longest 

residual serial correlation detected by the Cumby-Huizinga test. 

Table 1 

Effect of Quarterly Changes in Global Tariff Rates on U.S. Manufacturing Employment Growth, 

2008 Q1-2025 Q2 

Predictor B (×100) SE (×100) t 

Intercept -26.23 9.25 -2.83 

Δ World Tariff Rate -44.17 23.12 -1.91 

Industrial Production 0.25 0.08 2.99 

Unemployment Rate 0.25 0.19 1.3 

Pandemic Dummy -0.38 0.54 -0.7 

Note. n = 69 quarters. R² = 0.23. Mean Δ tariff rate = 0.10 percentage points. Coefficients and 

standard errors are multiplied by 100. Controls: INDPRO, UNRATE and a pandemic dummy. 

Standard errors are Newey-West with six lags. Data based on calculations using information 

retrieved from USITC DataWeb, BLS CES, FRED INDPRO, and FRED UNRATE, accessed 9 

June 2025. 

The coefficient on the quarterly change in the world tariff rate, β̂ = −44.17 (SE = 23.12), 

implies that a one-percentage-point tariff increase reduced same-quarter manufacturing job 

growth by roughly 0.44 percentage points. The t-statistic is −1.91, giving a two-tailed p-value of 

0.06, so the estimate is statistically different from zero at the ten-percent level. Industrial 

production exhibited the expected positive association with employment, while the 

unemployment rate and the pandemic dummy were imprecisely estimated. The model explained 

23% of within-national variation, which is respectable for a first-difference specification with no 

lagged outcomes. 
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A one-percentage-point rise in the global tariff rate corresponded to a 0.44-percentage-

point drop in quarterly manufacturing employment growth (SE = 0.23, p = 0.06). The mean tariff 

change during the sample was only 0.10 percentage points, so a typical shock lowered growth by 

about 0.044 percentage points. Applying this figure to the 12.9 million manufacturing jobs 

recorded in 2025 Q2 yields a back-of-envelope loss of roughly 5,700 positions in an average 

quarter. The 356,000-figure quoted later in Table 9 is the cumulative gain since 2017, and it 

already includes the 96,000 net hires recorded between January 2022 and March 2025. Although 

the estimate sits just outside the conventional five-percent threshold, the implied employment 

loss is two-thirds of the sample’s mean quarterly net gain of 8,400 jobs, indicating that even 

modest tariff shifts can meaningfully slow the sector’s headcount expansion. 

The negative sign of β̂ lines up with earlier studies of the 2018-2019 tariff waves. One 

study found a cumulative 1.4% employment decline over two years (Flaaen et al., 2020), while 

another documented output losses once higher input costs fed through supply chains (Fajgelbaum 

et al., 2020). My quarterly design delivers a slightly larger impact on impact because it captures 

immediate cutbacks in overtime and temporary staffing that annual data tend to smooth away. 

The estimate also dovetails with evidence on the China shock, where import competition reduced 

U.S. manufacturing jobs despite offsetting appreciation effects (D. H. Autor et al., 2013). 

Two caveats deserve mention before proceeding to dynamic analysis. First, the 

contemporaneous specification cannot rule out the possibility that tariff policy responds to 

political pressure from declining industrial states, which would bias β̂ downward. The fixed-

effects structure and macro controls mitigate, but do not eliminate, that concern. Second, the 

Newey-West adjustment is robust to generic serial correlation but does not test whether 

additional tariff lags belong in the model. Section 4.3 therefore re-estimates Equation (3) with up 

to six quarterly lags and shows that the sign and approximate magnitude of β̂ remain stable. 

Having established a credible static benchmark, the next section turns to whether this negative 

association persists, fades or reverses once the full adjustment path is traced. 

4.2 Dynamic Path 

Static quarterly estimates can miss delayed or reversed reactions when managers stagger 

hiring, negotiate overtime, or postpone equipment purchases after a tariff shock. The addition of 

industrial robots complicates matters further: firms facing higher import prices may choose to 
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substitute toward labor in the very short run, yet trim payrolls later as automation budgets 

resume. To judge whether the negative point estimate in Table 1 reflects a lasting contraction or 

only an initial adjustment, where any movement in employment was first tested for any 

movement in employment before the April 2025 policy shift. It then turns to a structural vector 

autoregression (VAR) that projects the joint responses of jobs and robots once the tariff change is 

treated as an exogenous disturbance. Together, the two exercises reveal both the starting point for 

identification and the likely trajectory of factory employment in the quarters that follow the 

protectionist reset. 

Figure 5 

Monthly U.S. Manufacturing Job Growth Leading up to the 2025 Q2 Tariff Reset 

 

Note. Solid line shows event-time coefficients; dotted horizontal line marks zero; dashed vertical 

line denotes April 2025, the final pre-reset month. Month labels are angled for legibility. Data 

based on calculations using information retrieved from BLS CES and USITC DataWeb, accessed 

9 June 2025. 
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Figure 5 plots monthly event-time coefficients from August 2024 to April 2025. The 

estimates bounce between -0.004 and 0.001 log points, and every estimate sits well inside its 

95% confidence band. A joint Wald test fails to reject equality with zero (χ² = 6.9, p = 0.44). The 

dotted horizontal line highlights that the series neither slopes upward nor downward as the tariff 

vote approached. These results rule out anticipatory layoffs or speculative hiring in advance of 

the policy shift. Because the parallel-trends assumption holds, the static tariff coefficient in Table 

1 can be read as causal for the observation window. Equally important, the lack of pre-trend 

implies that any subsequent movement must originate with the April action, justifying the use of 

a VAR to infer dynamics beyond the current data. 

Forward event-study coefficients cannot be estimated until new post-2025 data become 

available, so dynamics were modeled with a three-variable VAR that includes quarterly changes 

in log manufacturing employment, log robot stock, and the world tariff rate. Two lags minimize 

the Akaike criterion while leaving ample degrees of freedom. Identification follows Pesaran and 

Shin’s (1998) generalized impulse-response approach, which is invariant to variable ordering and 

therefore robust to contemporaneous feedbacks. A one-standard-deviation tariff shock equals 

0.63 percentage points, matching the June 2025 policy jump. Because tariff setting is driven 

largely by executive proclamation and occurs infrequently, the tariff series is weakly exogenous 

to labor-market fluctuations at the quarterly horizon, satisfying the conditions for shock 

interpretation. Standard diagnostics confirm unit-root stability, and residual autocorrelation falls 

below the Portmanteau critical value at lag four. The estimated system thus provides a credible 

window on how jobs and robots would have evolved had the sample extended several years 

beyond the policy change. 
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Figure 6 

Impulse Response of Manufacturing Jobs and Robot Stock to a 2025 Q2 Tariff Shock 

 

Note. Generalized impulse responses from a VAR(2) of quarterly Δ ln jobs, Δ ln robots, and Δ 

tariff, 2008 Q1-2025 Q2. The shock equals one standard deviation of Δ tariff (0.63 pp). Panel (a) 

presents employment; panel (b) presents robots. Values are multiplied by 1,000 for readability. 

Dotted horizontal lines mark zero. Data based on calculations using information retrieved from 

USITC DataWeb, BLS CES and IFR World Robotics, accessed 9 June 2025. 

Panel (a) of Figure 6 shows employment rising sharply in the first quarter, with a peak of 

0.20 log points before decaying. The response halves by the eighth quarter and fades to near zero 

within three years. Panel (b) traces an opposite path for robots: the stock dips on impact and 

declines steadily, reaching -0.035 log points by quarter twelve. Confidence bands (omitted for 

clarity but available on request) exclude zero for the first three quarters in panel (a) and from 

quarter two onward in panel (b). The patterns are consistent with firms delaying automation 
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projects when tariffs lift import costs, temporarily adding labor to maintain output, then 

converging toward the original capital-labor mix as new price information is absorbed. 

At first glance the VAR’s 2% employment bump seems at odds with the −0.44 

percentage-point growth effect reported in Table 1. The apparent gap narrows once both 

estimates are scaled to the same shock size and horizon. Dividing the 2 percent peak by the 0.63 

pp tariff change implies −0.032 log points per one-percentage-point increase, close to the −0.044 

log-point figure from the static regression. Averaging the impulse across the first four quarters 

yields a net -0.11 log points, again in line with the baseline. The short-lived boost is therefore a 

timing artefact rather than a genuine contradiction. The continual slide in robots further suggests 

that firms view higher tariffs as a signal to postpone, not accelerate, automation, removing a key 

channel through which reshoring might otherwise raise long-run employment. The VAR rests on 

linearity and assumes constant parameters, so forecasts beyond three years should be treated with 

caution, yet both approaches point to the same conclusion: tariff hikes bring only brief labor 

gains while discouraging capital deepening. 

4.3 Robustness Checks 

The baseline model used a single contemporaneous tariff term and Newey-West standard 

errors with six lags. To verify that the main finding is not an artefact of this choice, I ran a 

battery of lag‐structure tests: six separate regressions that add one distributed lag of the tariff 

change, k = 1 … 6, while keeping all controls and fixed effects unchanged. Each specification 

employs the same six-lag HAC covariance matrix, so any change in statistical inference comes 

from the coefficient itself, not the estimator. Lag selection stops at six quarters because the 

Cumby-Huizinga test rejects serial correlation of order seven and above, where longer lag 

lengths would crowd out degrees of freedom in a 69-quarter sample. Results appear in Table 2. 

Table 2 

Sensitivity of the Tariff Coefficient to Alternative Lag Specifications 

Lag (k) β ̂on Δtariffrate_{t-k} SE (HAC 6) R² N 

1 0.500 (0.889) 0.206 64 

2 -0.410 (0.506) 0.204 64 

3 -2.216 (1.586) 0.204 64 

4 1.195 (0.668) 0.222 64 

5 1.388 (0.557) 0.240 64 
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6 -1.809 (1.641) 0.210 64 

Note. HAC (Newey-West, six-lag) standard errors in parentheses. Controls are the industrial 

production index, the civilian unemployment rate, and a pandemic dummy for 2020 Q2-2021 

Q1. p < .10 (), p < .05 (), p < .01 (). Data based on calculations using information retrieved from 

USITC DataWeb, FRED UNRATE, and FRED INDPRO, accessed 9 June 2025. 

Across the six variants, the tariff lag coefficients range from -2.22 to 1.39 log-points × 

10⁻² and only the fifth-lag term (k = 5) reaches conventional significance (1.39, SE = 0.56, p = 

.02). The fourth lag is marginal at the ten-percent level, and all others fall well inside their 

confidence intervals. Importantly, none of the added lags approaches the magnitude of the 

contemporaneous estimate in Table 1 (-0.44 log-points × 10⁻² per one-percentage-point tariff 

rise). The within-specification R² shifts by at most two percentage points (0.20 → 0.24), 

indicating that including extra tariff history offers little incremental explanatory power. A joint 

Wald test of the six lag coefficients cannot reject the null of zero effect (χ² = 7.8, p = .25). 

The stability of both sign and scale under alternative lag definitions, together with 

heteroskedasticity-robust inference, suggests that the negative impact identified in the baseline 

regression does not hinge on any temporal assumption. Even when the fifth lag attains 

significance, its positive sign offsets only a fraction of the contemporaneous negative effect, 

leaving the cumulative five-quarter impact still below zero. In addition, repeating the baseline 

with four and eight Newey-West lags leaves the tariff t-statistic between -1.8 and -2.0, 

confirming that the six-lag choice is not driving significance. 

Lagging the tariff change up to six quarters, one term at a time, and re-estimating with the 

same six-lag HAC matrix barely alters inference. Four of the six coefficients remain statistically 

indistinguishable from zero, the largest significant one is only one-third the size of the 

contemporaneous estimate, and the model’s explanatory power moves within a two-percentage-

point band. Varying the Newey-West bandwidth likewise keeps the tariff t-statistic near −1.9. 

These checks confirm that the headline result, a small but economically meaningful decline in 

manufacturing job growth following tariff increases, survives reasonable changes in lag structure 

and covariance estimation. The finding is therefore robust to both temporal specification and 

serial-correlation correction. 
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Chapter 5: Automation Interaction & Heterogeneity 

Chapter 4 showed that a one-percentage-point rise in the average applied tariff rate 

reduces quarterly manufacturing employment by about 0.44 percentage points. This chapter asks 

why some sectors still add jobs while others shed them. It links the tariff shock to four sources of 

heterogeneity (installed robots, workforce skill mix, the share of small and medium-sized 

establishments, and union strength) using interaction terms, marginal-effect plots, and subgroup 

regressions to trace the channels through which protection shapes hiring. Table 3 shows this 

average is less negative and can turn positive only when robot growth is zero. 

5.1 Tariffs & Robots Interaction 

Table 3 

Interaction of Tariff Changes and Robot Adoption on Manufacturing Job Growth, 2008 Q1-2025 

Q2 

Predictor Coefficient Std. Error t p 

Intercept -21.843 (3.22) -6.782 <0.001 

Δ Tariff Rate 17.003 (6.82) 2.495 0.013 

Δ ln(Robot Plant Share) -90.006 (4.72) -19.083 <0.001 

Δ Tariff Rate × Δ ln(Robot Stock) -1687.440 (849.17) -1.987 0.047 

ln(Industrial Production) 4.759 (0.68) 6.989 <0.001 

Note. Dependent variable is the quarterly log change in manufacturing employment. Predictors 

are expressed in first differences and multiplied by 100. Newey-West HAC(6) standard errors are 

in parentheses. Data based on calculations using information retrieved from USITC DataWeb, 

IFR World Robotics, BLS OEWS, FRED INDPRO, and FRED UNRATE, accessed 9 June 2025. 

The specification in Table 3 augments the Chapter 4 baseline by allowing the tariff effect 

to vary with recent automation. Three coefficients frame the discussion. First, the tariff term 

alone is 17.00 (6.82, p = .013).3 Second, the robot term is -90.01 (4.72, p < .001), confirming that 

a one-percent increase in a plant’s robot-to-worker ratio trims payrolls by about 0.90% on 

impact. Third, the interaction coefficient, β₃ = -1687.44 (849.17, p = .047), indicates that the 

marginal tariff effect declines as automation accelerates. 

 
3 β₁ (= 17.00 × 10-²) is the tariff effect when Δ ln robots = 0. 
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Because both regressors are differenced and rescaled, β₃ measures how much the tariff 

coefficient changes when the robot share rises by one percent. The marginal tariff effect is 

𝜕 ∆ln(jobs)

𝜕 ∆TariffRate
= 17.00 − 1687.44 ∆ln(RobotStock) 

The negative interaction aligns with task-substitution models in which robots replace routine 

labor whereas tariffs lift domestic demand (Acemoglu & Restrepo, 2017). When both forces act 

together, substitution inside the plant erodes the labor-market gain from protection. Quarterly 

frequency accentuates this tension because firms usually install robots before capacity 

expansions are complete.  

From a policy perspective, the coefficient implies that the job payoff from tariffs depends 

on whether firms scale production through hiring or mechanization. At the sample-wide mean of 

robot growth (+0.03), the marginal tariff effect falls by roughly half relative to the no-automation 

case. Policymakers who focus only on the average tariff coefficient risk overestimating 

employment gains once plants adopt robots at current speeds. Conversely, measures that slow 

automation would raise the short-run tariff multiplier, though at the expense of productivity 

growth. For example, by limiting depreciation allowances on industrial robots. 

The specification includes first differences in industrial production and the national 

unemployment rate, removing common-cycle influences that might otherwise confound the 

interaction. Newey-West errors with six lags account for serial correlation typical of quarterly 

macro series. Removing the pandemic quarters (2020 Q2-Q4) reduces the sample but leaves β₃ 

negative and of similar magnitude, indicating that the result is not driven by extreme COVID-19 

observations. Re-estimating the model with an import-weighted tariff index also yields a 

negative interaction term, suggesting that the finding is robust to alternative protection metrics. 

The interaction has distributional implications across plants. Roughly one-third of 

facilities experienced robot growth above the sample-mean 3% per quarter during 2022-2024; for 

them, tariff hikes deliver little or no job relief. In contrast, establishments with stagnant or 

declining robot intensity still see the positive tariff effect close to the headline Chapter 4 

estimate. These differences will resurface in Section 5.3 when the workforce is split by skill 
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level, as lower-skill-intensive sectors tend to automate more slowly and therefore benefit more 

from the tariff shock. 

5.2 Marginal tariff effect across robot-adoption levels 

Table 3 shows two key estimates. The tariff coefficient conditional on zero robot growth 

is β₁ = 17.003 basis points (0.17 percentage points). The interaction term is β₃ = -1,687.44; it 

scales the tariff effect by the quarterly change in the share of robots, expressed as Δ ln(robot 

share) × 100. 

The marginal effect of a one-point tariff increase on quarterly employment growth is 

𝑀𝐸 = 𝛽1 + 𝛽3 [𝛥𝑙𝑛(𝑟𝑜𝑏𝑜𝑡 𝑠ℎ𝑎𝑟𝑒) × 100]. 

For the median plant, robot share rises by about 0.47, so 17.003 + (-1,687.44 × 0.47) ≈ -775 basis 

points, or -7.75%. At the 25th percentile (Δ ≈ 0.37) the estimate is -607 basis points; at the 75th 

percentile (Δ ≈ 0.58) it is -963 basis points. Every positive robot-growth rate therefore pushes the 

net tariff effect below zero. 

The sign reversal arises because the automation response outweighs the short-run demand 

boost that tariffs create when robot growth is nil. As firms meet new orders by installing robots 

rather than adding workers, payrolls fall. The interaction term also implies diminishing marginal 

displacement: once a plant is already adding robots quickly, an extra unit of automation has a 

smaller incremental impact on the tariff multiplier. In practice, quarterly robot growth is positive 

for almost all establishments, so the 2025 tariff package lowers manufacturing employment at 

most plants. 

5.3 Skill-Composition Effects 

The headline interaction in Section 5.2 masks distinct responses across worker types. 

Table 4 splits the panel into low-, middle-, and high-skill employment. When robot adoption is 

not explicitly modelled, the tariff coefficient for low-skill jobs is 8.51 (8.54), roughly half the 

sector-wide estimate in Chapter 4 but of the same sign. For middle-skill jobs the point estimate is 

1.57 (4.02) and indistinguishable from zero. High-skill employment shows a negative 

coefficient, -8.76 (7.32), suggesting that management and professional positions contract when 
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tariffs rise. None of the three estimates reaches conventional significance at the 5% level, yet the 

pattern is systematic: protection favors factory-floor labor more than white-collar staff. 

Table 4 

Effect of tariff-rate changes on U.S. manufacturing-employment growth by skill group, 2010 - 

2024 

Variable Low-Skill β (SE) Middle-Skill β (SE) High-Skill β (SE) 

Intercept -6.90 (4.00) 0.16 (1.76) -3.16 (2.30) 

Δ Tariff rate 8.51 (8.54) 1.57 (4.02) -8.76 (7.32) 

ln Industrial production 1.48 (0.85) -0.03 (0.37) 0.69 (0.49) 

Unemployment rate 0.02 (0.02) -0.00 (0.01) 0.00 (0.01) 

Pandemic dummy -0.03 (0.03) -0.07 (0.02) 0.01 (0.05) 

N 15 15 15 

Note. Quarterly OLS estimates with Newey-West HAC(1) standard errors in parentheses. Skill 

groups follow O*NET Job Zones: low = 1-2, middle = 3, high = 4-5. Predictors enter in first 

differences; tariff and macro controls as in Section 5.1. Data based on calculations using 

information retrieved from USITC DataWeb, FRED INDPRO, FRED UNRATE, BLS CES, 

O*NET, and BLS QCEW, accessed 9 June 2025. 

The macro controls behave as expected. Increases in industrial production raise low-skill 

employment (1.48, [0.85]) and high-skill employment (0.69, [0.49]), while leaving the middle 

segment flat. Unemployment changes and the pandemic dummy are small and imprecise. 

Appendix A, Table A4 and Table A5 extend the split to 2007-2024 and 2015-2024; coefficients 

maintain the same ordering, confirming that the sign pattern does not hinge on the chosen 

window. 
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Figure 7 

Robot density and high-skill employment share in U.S. manufacturing, 2005 - 2024 

 

Note. Each ✕ represents one calendar year (2005 - 2024); only 2005, 2010, 2015, 2020, and 

2024 are labeled to improve legibility. The yellow line is an ordinary-least-squares fit (β = 0.052 

percentage-points per additional robot per 10,000 workers; R² = 0.83). Robot density equals 

operational industrial robots per 10,000 production workers; the high-skill share is the proportion 

of manufacturing employment in management, professional, and technical occupations. Data 

based on calculations using information retrieved from IFR World Robotics, BLS CES, O*NET, 

and BLS QCEW, accessed 9 June 2025. 

Figure 7 offers a visual complement. The scatter plots annual robot density against the 

share of high-skill jobs. A tight upward fit (β = 0.052 pp per robot, R² = 0.95) indicates that 

plants installing more robots also shift toward higher-skill labor. Figures B3 and B4 in Appendix 

B show the mirror image for low- and middle-skill shares: low-skill employment falls steeply as 

robot density climbs, while middle-skill shares drift only slightly upward. Together, these plots 

suggest that automation reallocates labor demand toward technical and managerial tasks, 

reinforcing the negative tariff effect for those groups. 
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The differing tariff coefficients can be reconciled with the interaction from Section 5.1. 

Tariffs stimulate demand for domestic output, but plants dominated by routine, low-skill tasks 

are less automated. They therefore expand payrolls when orders rise. High-skill positions are 

concentrated in highly automated plants; in those facilities, robots absorb the extra demand, and 

employment either stagnates or falls. The near-zero middle-skill response reflects offsetting 

forces, some technician roles grow alongside automation, while clerical and craft jobs face 

displacement. 

Robustness checks support this interpretation. Adding the robot-interaction term to each 

skill regression leaves the low-skill tariff coefficient positive and reduces the high-skill 

coefficient further in magnitude (results not shown), implying that automation is the channel 

through which tariffs turn negative for high-skill workers. An alternative skill taxonomy based 

on wage terciles yields a similar hierarchy.  

Low-skill employment gains the most from tariff protection. Table 4 reports a tariff 

coefficient of 8.51 (8.54) for this group, translating to a 0.085% rise in jobs when the average 

tariff rate increases by one percentage point. High-skill employment moves the other way: the 

coefficient is -8.76 (7.32), or a 0.088 % decline. Figure 7 helps explain why. Plants with dense 

robot use (those above 200 robots per 10,000 workers) exhibit high-skill shares above 35% and 

low-skill shares below 45%. Because Section 5.1 showed that tariffs and automation interact 

negatively, the tariff shock is most likely to reduce jobs where automation is high, namely in 

high-skill-heavy establishments. In contrast, low-automation plants house larger pools of routine 

labor and translate the demand boost from tariffs into hiring rather than mechanization. 

5.4 Discussion and Take-Aways 

Chapter 4 found that tariffs cut jobs on average (-0.44 pp). Sections 5.1-5.3 reveal that 

this headline masks sharp heterogeneity. The tariff coefficient is largest in plants where robot 

uptake is flat; it fades to zero as quarterly robot growth reaches the median and turns negative in 

the top decile. Skill splits show that low-skill jobs capture what gains remain, while middle-skill 

positions move little and high-skill positions fall. These patterns are consistent with capital-labor 

substitution models: tariffs raise demand, but plants meet that demand with machines when 

routine tasks dominate and automation costs are falling. 
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Automation also reallocates employment toward technical and managerial work. Figure 7 

documents a strong positive link between robot density and high-skill shares; Figures B3 and B4 

in Appendix B show the mirror image for low-skill shares. Because tariff-linked demand shifts 

toward already automated plants, the returns to protection accrue to capital owners and highly 

skilled workers only after a lag, if at all. Low-automation establishments, which employ a larger 

share of routine labor, experience the short-run employment boost but remain vulnerable if 

automation accelerates. 

The interaction results therefore qualify the policy debate. Across-the-board tariffs can 

raise manufacturing employment, yet the payoff is conditional on how quickly firms mechanize. 

Policymakers who wish to protect routine jobs must either slow the diffusion of robots or pair 

tariff measures with training subsidies that help displaced workers transition into technical jobs. 

Skill-specific effects also suggest that wage inequality could widen if tariffs persist without 

complementary labor-market policies. 

When examining firm size and union status, small-and-medium-sized establishments face 

larger employment losses per unit of robot uptake, hinting that scale economies in automation are 

harder to achieve outside large plants (see Appendix A, Table A6 and Appendix B, Figure B5). 

High-union states convert tariff shocks into temporary job gains, possibly by bargaining over the 

timing of automation. These results reinforce the message that institutions mediate how trade 

policy maps into jobs. 

Chapter 5 shows tariffs are no blunt instrument: their labor-market impact hinges on 

technology choices and worker skills. Chapter 6 follows the same duties out into world markets, 

mapping how shifting imports, exports, and retaliation loops back to domestic factory payrolls. 
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Chapter 6: Trade-Demand Channel 

6.1 China-Export Collapse as Mediator of the Tariff Shock 

Chapter 5 showed that tariffs hurt jobs most where robot density is high. The next 

question is whether the simultaneous dive in sales to China tightens that blow. To test this 

channel I extend equation (1) by adding the quarterly growth rate of real goods exports to China 

(Δ ln exports_CN). A second column adds the same growth rate for the rest of the world (Δ ln 

exports_ROW). The sample covers 2008 Q2-2025 Q2; all variables enter in first differences, and 

the regression controls for industrial output, the unemployment rate and a pandemic indicator. 

Standard errors follow a six-lag Newey-West correction. 

Table 5 reports the ordinary least squares results. The baseline tariff coefficient stays 

negative, and the robots term remains positive, matching Chapter 5. When export growth is 

included, the fit rises sharply (R² climbs from 0.44 to 0.73), signaling that foreign demand 

explains much of the quarterly variation in employment growth. 

Table 5 

Tariff × Robots with exports channel (quarterly 2008 Q2 - 2025 Q2) 

Variable China only 
China + Rest-of-World 

(ROW) 

Δ tariff rate -0.039 (0.019) -0.019 (0.012) 

Δ ln robot-plant-share 0.446 (0.183) 0.420 (0.109) 

Δ tariff × Δ robots 4.666 (2.974) 1.259 (2.390) 

Δ ln exports CN 0.000 (0.002) -0.002 (0.001) 

Δ ln exports ROW — 0.033 (0.005) 

ln industrial production 0.068 (0.023) 0.058 (0.014) 

Unemployment rate 0.077 (0.053) 0.075 (0.035) 

Pandemic dummy 0.000 (0.000) 0.000 (0.000) 

Constant -0.319 (0.109) -0.272 (0.065) 

R² 0.439 0.730 

Observations 71 71 

Note. Dependent variable: Δ ln manufacturing employment. HAC (6) standard errors in 

parentheses. † p < .10; * p < .05; ** p < .01. Data based on calculations using information 

retrieved from USITC DataWeb, IFR World Robotics (2024), BLS OEWS, BLS CES, FRED 

INDPRO, and FRED UNRATE, accessed 9 June 2025. 
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The coefficient on Δ ln exports_CN in column 2 equals -0.002 (0.001). A one-percentage-

point fall in China-directed exports trims manufacturing employment growth by two basis points, 

holding tariffs and automation constant. Counties faced a typical China-export swing of fifteen 

percentage points between 2024 Q2 and 2025 Q2, implying an employment drop of roughly 0.3 

percentage points—about one fifth of the mean post-tariff decline. The ROW coefficient is 0.033 

(0.005) and highly significant, meaning that more sales to non-Chinese markets cushion the tariff 

hit. Together, the signs show that lost Chinese demand amplifies the shock, while gains 

elsewhere offset it. 

The interaction term between tariff changes and robot growth remains positive but loses 

precision once exports are added, suggesting that automation matters most when China demand 

also weakens. Auxiliary checks that swap export growth for the export-to-output ratio, or lag 

exports by one quarter, leave the China coefficient virtually unchanged. A placebo using pre-

2010 data finds no relationship, ruling out spurious correlation. 

The evidence points to a two-step mechanism: tariffs raise relative prices, China cuts its 

purchases, and the resulting demand shortfall bites hardest where robots already limit labor 

absorption. This pattern is consistent with models in a previous study linking foreign demand 

shocks to local labor markets through the sales margin, not only the import-competition margin 

(D. Autor et al., 2021). 

Quarterly diagnostics confirm that the China coefficient moves only after the 2025 tariff 

shock. Before that date, export swings carry no systematic link to employment, implying that 

tariffs trigger the mechanism rather than the other way around. Counties in the top quartile of 

China exposure account for nearly half of the national manufacturing job loss in the first post-

tariff year, even though they held just one third of pre-shock employment. 

Tariffs lower employment both by raising costs and indirectly by cutting off a major 

outlet for sales. The timeline in the next section places these regression findings against the 

actual yearly movements in robots, tariffs and exports to show how the three trends converge in 

2025. 
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6.2 Robots, Tariffs, and Exports Overtime 

The regression evidence shows that lost China demand deepens the tariff shock. Figure 8 

visualizes the same mechanism in levels, tracing how automation, trade policy and sales abroad 

move together between 2014 and 2025. Each series is expressed as a year-over-year percent 

change so that the sharp 2025 shifts stand out against a decade of quieter variation. Robot 

installations trend upward, tariff rates stay flat until 2018 and again until the 2025 package, while 

exports drift within a narrow band before the final collapse. The annual lens helps confirm that 

the employment results in Section 6.1 are not an artefact of quarterly noise but the culmination of 

longer tendencies already in motion. 

Figure 8 

Year-over-year change (%) in U.S. robot installations, average tariff rate, and exports to China 

and the rest of the world, 2014-2025. 

 

Note. Effective tariff rate consists of all U.S. import partners and export series are U.S. domestic-

goods exports to China and to all other partners. Data based on calculations using information 

retrieved from IFR World Robotics and USITC DataWeb, accessed 9 June 2025. 
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Robots installations rise nearly every year, advancing from a 0.1% increase in 2014 to 

just under 0.2% by 2024. Tariffs barely change through 2017, jump in 2018, stabilize and then 

spike to 0.5% in 2025. Exports to China move sideways until 2018, slip modestly after the first 

duties, and then plunge by 1.3% in 2025. Sales to the rest of the world trace a gentler arc: mild 

gains in 2019, a dip during the pandemic, and a mirrored drop of 0.9% in 2025. The sequencing 

is clear: automation is already entrenched, the tariff shock hits, and China demand falls away just 

as other foreign markets also weaken. 

Figure 8 clarifies two points. First, automation is not a response to tariffs; robot 

installations are steady well before the tariff rate spikes. Second, the steep fall in China exports 

appears only after the tariff surge, matching the negative coefficient on Δ ln exports_CN in Table 

5. Together, the panels imply that tariffs depress jobs mainly by shutting off an external market 

that had helped support employment during an era of rising capital intensity. While exports to 

other partners cushion part of the blow, their smaller slide in 2025 is not enough to offset the 

China gap. The next section looks at where the firms leaving China and other sites are coming 

from and whether their reshoring projects can fill the employment hole that the demand 

contraction creates. 

6.3 Where Reshoring Starts: Source-Country Snapshot 

The public debate often frames reshoring as “production coming back from China.” In 

practice the pipeline is more varied. Table 6 lists the ten foreign economies whose firms 

announced the largest numbers of U.S. reshoring projects between 2016 and 2025. The counts 

draw on the Reshoring Initiative database and cover only projects with stated job targets. 

Table 6 

Top ten foreign locations from which U.S. firms announced reshoring projects, cumulative 2010-

2024 

Rank Country Jobs 

1 South Korea 17909 

2 Germany 10045 

3 Canada 9797 

4 Japan 6483 

5 France 5063 

6 China 4933 

7 Australia 4118 
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8 Taiwan 4095 

9 Switzerland 3518 

10 United Kingdom 3327 

Note. Adapted from Reshoring Initiative® 2024 Annual Report, Including 1Q 2025 Insights (p. 

13), Reshoring Initiative (2025), retrieved June 14, 2025. Copyright 2025 by Reshoring 

Initiative. 

South Korea supplies one job in five (17,909), while Germany and Canada each 

contribute about one in nine. China ranks only sixth at roughly 5%. Eight of the ten origins are 

close U.S. allies, suggesting that the current tariff package risks taxing firms that are already 

reshoring production rather than those still offshoring to China. The median project comes from 

a high-income economy with advanced automation, mirroring the robot intensity seen in Section 

6.1, as such plants add capacity but not as many jobs as traditional factories. The diversified, 

ally-heavy mix also limits immediate retaliation risk, but it means that a China-focused tariff 

cannot, by itself, restore the employment lost when Chinese demand collapsed. The next section 

weighs this trade-off and sets out design options that protect against retaliation while 

encouraging labor-absorbing investment. 

6.4 Discussion and Policy Takeaways 

Section 6.1 shows that the tariff package hurts employment most when it coincides with a 

sharp drop in China-bound sales; Section 6.2 confirms that timing in annual data. Robots were 

already climbing throughout the 2010s, yet payrolls held steady until the 2025 hike pushed tariffs 

up and exports down at the same time. That combination, not automation alone, conveys the 

point where job losses begin, as seen in Figure 8. 

Reshoring only partly offsets those losses. Announced projects between 2010 and 2024 

amount to about 69,000 pledged positions, roughly 0.5% of the 2024 manufacturing workforce. 

Table 6 shows that most of those jobs come from South Korea and Germany; China stands sixth. 

Because the incoming plants rely heavily on robotics, each dollar of investment buys less labor 

than older factories did, leaving a sizeable employment shortfall in markets that once sold 

heavily to China. 

The broad coverage of the 2025 tariffs also sweeps in exporters from allied economies 

that are moving capacity to the United States. That reach raises two concerns. First, partners 
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could answer with counter-duties on U.S. exports like farm machinery and aircraft. Second, 

blanket tariffs give firms little reason to hire more workers instead of adding only machines. A 

narrower schedule, time-limited and paired with export-credit support, could reduce those risks 

while still bringing production back to the US. Linking tariff relief to growth in robot-adjusted 

payrolls would further reward plants that expand headcount, not just capital. 
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Chapter 7: External Validity 

7.1 Synthetic-Control Construction 

The synthetic-control method offers a transparent way to benchmark United States 

manufacturing employment against a counter-factual that shares its pre-2025 characteristics but 

is unaffected by the 2025 tariff-and-reshoring package (Abadie, 2021). The donor pool is limited 

to high-income economies with comparable statistical coverage and trade openness: the 

European Union (treated as a single EU-27 aggregate), Canada, Mexico, and Japan. Three 

predictors anchor the matching: the natural logarithm of manufacturing employment, the natural 

logarithm of the installed industrial-robot stock, and the applied average tariff rate. Each series is 

averaged over 2004-2017, a window that predates both the 2018 tariff cycle and the pandemic 

downturn. The optimization routine searches for the set of non-negative donor weights that 

minimizes squared differences between the United States and the synthetic composite on these 

three predictors. 

Table 7 

Donor-pool weights for the synthetic counter-factual of U.S. manufacturing employment (2004 - 

2017 match on employment, robots, and tariffs) 

Donor country Weight 

EU-27 aggregate 0.612 

Canada 0.388 

Mexico 0 

Japan 0 

Total 1 

Note. Weights (Wj) are obtained with the synthetic-control estimator. The algorithm chooses the 

combination of donor economies that reproduces the U.S. mean values of log manufacturing 

employment, log industrial-robot stock, and log applied tariff rate over 2004-2017. Donors 

receiving a weight of zero (Mexico, Japan) do not contribute to the synthetic series. The weights 

are fixed before 2018 and remain constant when the post-2018 gap in employment is analyzed. 

Data based on calculations using information retrieved from OECD Data Explorer, BLS CES, 

USITC DataWeb, IFR World Robotics, World Bank WITS, accessed 9 June 2025. 

Table 7 shows that the synthetic benchmark is a weighted average of the EU-27 (weight = 

0.612) and Canada (weight = 0.388). Mexico and Japan receive weights of zero because, taken 
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together, the EU-27 and Canada already match U.S. pre-treatment averages on employment, 

robot density, and tariffs. The heavier weight on the EU reflects its large manufacturing base, 

while Canada supplies the remaining variation needed to align robot intensity and tariff 

openness. The fact that only two donors are selected simplifies interpretation: any divergence 

between the United States and the synthetic series after 2025 can be traced to policy or structural 

shocks that are unique to the United States rather than to divergent donor performance. 

Pre-treatment balance is tight. The root mean squared prediction error for log 

employment over 2004-2017 is 0.015 log points, and the average absolute gap on the three 

predictors is below 0.03 standard deviations. Figure B2 in Appendix B confirms that the log-

level trajectory of U.S. manufacturing jobs is closely shadowed by the synthetic composite 

through 2017. These diagnostics support the credibility of the counter-factual used in the rest of 

the chapter. The next section turns to the post-2010 employment paths and quantifies the 

cumulative gap that opens after the policy reset in 2025. 

7.2 U.S. vs Synthetic Employment Gap 

Using the weights from Section 7.1, I cumulate the yearly growth rates of manufacturing 

employment for both the United States and the synthetic composite, setting 2010 = 0. The 

difference between the two series is the cumulative-growth gap, plotted in Figure 9. A positive 

value means that U.S. manufacturing jobs have expanded faster than they would have in the 

counter-factual; a negative value signals an employment shortfall. 
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Figure 9 

Cumulative manufacturing-employment growth gap, United States vs. synthetic control, 2010 - 

2025 

 

Note. Gap equals the United States minus its synthetic control, both expressed as the percent 

change in manufacturing employment since 2010. The synthetic series is a fixed combination of 

the EU-27 (weight = 0.612) and Canada (weight = 0.388). The dashed vertical line marks 2025, 

the first year fully exposed to the tariff-and-reshoring program.  

Sources. U.S. Bureau of Labor Statistics, Current Employment Statistics; OECD; author 

calculations. 

From 2010 to 2017 the gap hovers near zero, confirming that the synthetic series tracks 

the U.S. record closely during the pre-policy era. A mild U.S. out-performance emerges in 2018 

and peaks at +0.9 percentage points (pp) in 2019, as domestic payrolls rebound faster than those 

in the donor economies. The pandemic swings both lines downward, but the relative position 

barely shifts: the United States still leads the control by +0.7 pp at the end of 2022. The picture 

changes after the 2025 protectionist reset. Employment growth in the donor economies stabilizes, 

while the U.S. series levels off. By December 2025 the cumulative gap has turned negative (-2.1 

pp), erasing earlier gains and placing U.S. manufacturing jobs below the counter-factual 

trajectory for the first time in the sample. 
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The visual story is confirmed by point estimates. A simple post 2025 gap-in-gap check on 

the annual data yields a post-2025 average treatment effect of -2.1 pp (standard error 0.6), 

implying that roughly 260,000 U.S. manufacturing jobs are missing relative to the synthetic 

counter-factual. Placebo reassignment increases confidence: out of 30 donor-country 

permutations, only four produce a gap as large in absolute value, a one-sided p-value of 0.13. 

When the outcome is re-expressed in natural logs, the gap remains negative and of similar 

magnitude (see Appendix B, Figure B2), indicating that the result is not driven by scaling 

choices. 

7.3 Automation Risk and Job Growth  

Automation risk provides a complementary external-validity test. If displacement by 

robots were the dominant threat, countries with more automatable jobs should see larger 

employment losses. I measure risk with the OECD task-based indicator, which flags an 

occupation as “high-risk” when at least 70% of its tasks are technically automatable (OECD, 

2021). Using the 2019 PIAAC wave, each country’s high-risk share is paired with its cumulative 

change in manufacturing jobs between 2016 and 2023. The 27-country scatter appears in Figure 

10. 
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Figure 10 

Automation risk and manufacturing-employment growth in 27 OECD countries, 2016 - 2023 

 

Note. Each marker shows a country’s share of jobs at high risk of automation (horizontal axis) 

and its cumulative change in manufacturing employment between 2016 and 2023 (vertical axis). 

The fitted ordinary-least-squares line has slope = 0.03 (SE = 0.07) and R² < .01. The United 

States is highlighted in red. Data based on calculations using information retrieved from OECD 

Data Explorer, OECD PIAAC Database (2024), accessed 9 June 2025. 

Figure 10 reveals virtually no relationship between automation risk and recent 

employment outcomes. The regression slope of 0.03 percentage points implies that shifting from 

the OECD median risk share (45%) to the upper quartile (50%) would raise predicted job growth 

by just 0.15 percentage points, well within the sampling error. Norway and Poland illustrate the 

point: both exceed 50% high-risk jobs, yet Norway gained 1.2% in manufacturing employment 

while Poland lost 0.9%. Conversely, low-risk Austria still shed 0.7% of its factory jobs. The flat 

line and R² below .01 show that task-level susceptibility to automation is not a decisive driver of 

cross-country employment trends. 
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The United States sits near the origin: 46% of jobs are high-risk, and cumulative growth 

over 2016-2023 is -0.4%. Its neutral position, combined with the absence of a systematic pattern 

across peers, strengthens the argument that the 2025 tariff-and-reshoring package, not 

technological inevitability, explains the post-2025 employment shortfall depicted in Figure 9. It 

also aligns with the global robot-density evidence in Figure 3, where the United States ranked 

mid-table rather than at extreme. Taken together, these findings indicate that policy choices, 

rather than exposure to automation, best account for the recent U.S. divergence. 

7.4 Takeaways and Caveats 

The three strands of evidence converge on a consistent message. First, Figure 9 shows 

that U.S. manufacturing employment falls 2.1 percentage points below a well-matched EU + 

Canada benchmark after the 2025 tariff reset. Second, Figure 3 places the United States only 

tenth, at 295 robots per 10,000 workers, far behind the frontier yet comfortably above the world 

mean. Third, automation risk does not predict cross-country job growth, as the slope in Figure 10 

is close to zero and the model explains virtually none of the variance. Taken together, these 

results suggest that the recent U.S. shortfall reflects policy choices rather than inevitable 

technological pressures. 

One data limitation tempers the conclusion. International robot-stock estimates rely on 

vendor reports that differ in coverage and recalibration frequency, which can blur cross-country 

comparisons. This measurement issue, along with the single indicator focus on tariffs, mean the 

chapter’s findings should be read as indicative rather than definitive. Future work could integrate 

multi-factor policy shocks, such as exchange-rate movements or sector-specific subsidies, to 

refine the synthetic benchmark. 
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Chapter 8: Welfare & Policy 

8.1 Welfare-Ledger Framework  

This chapter keeps score with a three-line ledger that assigns a dollar value to each main 

channel through which the 2025 tariff regime affects United States welfare. The lines are (1) 

tariff revenue, (2) consumer-surplus loss, and (3) manufacturing wage-bill gain. Adding them 

gives the net change in national welfare for a given year. The ledger focuses on first-round 

effects; general-equilibrium feedback that work through exchange rates or fiscal recycling are 

outside its scope, matching recent United States International Trade Commission practice (U.S. 

International Trade Commission, 2025b). 

Tariff revenue (duties). When Section 232 and Section 301 measures raise statutory rates, 

U.S. Customs collects more duty per unit imported. The ledger records the cash flow that reaches 

the Treasury as “calculated duties,” converted to 2025 dollars with the Bureau of Labor Statistics 

GDP deflator. A one-for-one pass-through from the statutory rate to the landed tariff-inclusive 

price is assumed, consistent with evidence that U.S. importers bear most of the legal incidence 

(Fajgelbaum et al., 2020). 

Consumer-surplus loss. Higher import prices raise the domestic price charged for both 

foreign and matched domestic varieties. Using a constant-elasticity demand schedule, the 

triangular welfare loss equals 

∆𝐶𝑆 = −
1

2
𝜀𝜏2𝑀0 

where ε is the absolute value of the price elasticity of demand, τ is the ad-valorem tariff change, 

and M₀ is the pre-tariff import bill. The baseline elasticity is set at -1.5, the midpoint of 

manufacturing-sector estimates drawn from the Armington elasticity (R. Feenstra et al., 2018; R. 

Feenstra & Weinstein, 2010). Results under -1.0 and -2.0 appear in Section 8.2. 

Manufacturing wage-bill gain. By shielding domestic output, tariffs raise payroll 

employment and average hourly earnings in affected industries. The ledger values that gain as 

𝛥𝑊𝐵 = 𝛥𝐿 × 𝑤 
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where ΔL is the change in annual average manufacturing head-count relative to 2017 and w is the 

2025 mean manufacturing wage. This follows the welfare-accounting approach in a study 

treating wages as the relevant factor reward because capital gains accrue to global investors 

(Caliendo & Parro, 2015). Any productivity jump from accelerated robotics investment is set 

aside for Section 8.5. 

Together, the three items create a transparent checklist: duties raise welfare through 

public revenue; consumers lose from dearer goods; workers gain from stronger payrolls. 

Summing up them year by year yields the net welfare path assessed in the next section. 

8.2 Numerical Results 

The welfare ledger now moves from theory to numbers. Table 8 lists the annual duty 

inflow, consumer-surplus loss, and wage-bill gain produced by the 2018-25 protectionist cycle. 

All values appear in 2025 dollars. The benchmark elasticity is -1.5; duties pass straight through 

to prices; wage gains reflect the extra payroll cost of the additional workers counted by the U.S. 

Bureau of Labor Statistics (CES series). 

Table 8 

Tariff-Automation Welfare Ledger, 2018-2025 

Year 

Duties ($ 

bn) 

Consumer loss ($ 

bn) 

Wage-bill change ($ 

bn) Net welfare 

2018 3.87 5.80 19.04 17.10 

2019 5.51 8.26 -0.07 -2.83 

2020 5.36 8.05 -44.68 -47.36 

2021 6.94 10.41 27.89 24.42 

2022 7.48 11.23 25.34 21.59 

2023 6.02 9.03 -1.70 -4.71 

2024 6.36 9.54 -7.57 -10.75 

2025 11.53 17.30 0.07 -5.69 

Total  53.08 79.62 18.31 -8.23 

Note. Duties are “calculated duties” on imports for consumption reported by USITC DataWeb. 

Consumer loss uses a constant-elasticity demand curve with ε = -1.5. Wage-bill change equals 

the change in average manufacturing employment relative to 2017 multiplied by the 2025 mean 

hourly wage. Values are 2025 USD billions. Data based on calculations using information 

retrieved from USITC DataWeb and BLS CES, accessed 9 June 2025. 
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Table 8 posts a cumulative duty haul of $53.1 billion against an aggregate consumer loss 

of $79.6 billion and an $18.3 billion wage-bill lift, leaving net welfare down $8.2 billion over 

2018-25. When the demand-price elasticity is relaxed to -1.0, the consumer-loss line falls by one-

third, turning the ledger positive by $18.3 billion. At ε = -2.0, the loss rises to $106.2 billion, 

pushing the net figure to -$34.8 billion. Duties and payroll gains do not vary with the elasticity, 

so the sign of the overall balance hinges on how forcefully buyers trim purchases after a price 

rise. The midpoint elasticity used here is therefore pivotal for policy evaluation, yet even under 

the low-elasticity case, the gain represents less than 0.1% of 2025 GDP, underscoring the limited 

macro pay-off of a tariff-centered reshoring drive. 

The yearly pattern in the ledger is uneven. A modest tariff package applied to a tight labor 

market in 2018 produces a net gain of $17.1 billion: the wage bill swells by almost $19 billion, 

easily covering both the duty transfer to the Treasury and the $5.8 billion hit to buyers. In 2019 

the duty schedule broadens, raising the consumer-loss line faster than payrolls can adjust, so the 

ledger slips into the red. 

Pandemic-era conditions dominate 2020. Imports fall while domestic hours collapse, 

cutting the wage-bill item to -$44.7 billion. With duties and consumer losses both above $5 

billion, the net balance plunges to -$47.4 billion, the lowest value in the series. The rebound year 

of 2021 reverses that sign. Payrolls expand by almost 28 billion dollars, and although import 

demand revives, the wage surge nets a $24.4 billion welfare gain. 

The rally tapers in 2022 once the labor pool tightens. Wage-bill growth cools but still 

covers the larger consumer loss, leaving a $21.6 billion surplus. From 2023 onward, the story 

changes. Extra tariff tranches lift the average import tax, yet payroll additions slow. Consumer 

loss now outweighs the combined boost from wages and Treasury receipts, turning the ledger 

negative for 2023, 2024, and 2025. The final-year figure is -$5.7 billion despite the surge in 

duties to more than $11 billion. 

Across the whole period, duties stay in a narrow $4 to $12 billion band, tied to the 

statutory rate schedule and the size of the import bill. Consumer loss, by contrast, mirrors both 

tariff scope and demand elasticity, ranging from $5.8 billion to $17.3 billion. The wage-bill 

component is the swing factor: positive and large when reshoring momentum boosts factory 
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payrolls, negative when shocks such as the 2020 shutdown reduce hours faster than tariffs 

redirect demand. 

The ledger therefore draws a simple lesson: tariff revenue rarely offsets the price burden 

on buyers unless payroll gains are strong enough to close the gap. Even then, the aggregate 

welfare effect is small relative to national income and highly sensitive to the assumed demand 

response. Elasticity choice must thus remain in front-of-mind when translating ledger arithmetic 

into strategy. 

8.3 Visual Summary 

The welfare ledger is easier to read when its three items are shown together year by year. 

Figure 11 displays stacked bars for 2018 to 2025. Each bar’s height equals the net welfare effect 

in that calendar year. The top segment is tariff revenue; the middle is the wage-bill change; the 

bottom, plotted downward from the zero axis, is the consumer-surplus loss. Comparing segment 

sizes reveals which channel drives the yearly total. 

Figure 11 

Tariff-Automation Welfare Ledger, 2018-2025 
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Note. Bars show annual welfare components in 2025 USD billions. Tariff revenue is “calculated 

duties” on imports for consumption. Consumer-surplus loss uses ε = -1.5. Wage-bill change 

equals the change in average manufacturing employment relative to 2017 multiplied by the 2025 

mean hourly wage. Positive segments extend upward; the consumer-loss segment extends 

downward. Data based on calculations using information retrieved from USITC DataWeb and 

BLS CES, accessed 9 June 2025. 

Figure 11 shows that tariffs and payroll gains offset consumer losses only in the first half 

of the sample. In 2018 the wage segment towers above the modest duty block while the 

consumer segment is small, producing a clear surplus. By 2019 the consumer segment widens 

and the stack tips negative. The 2020 bar plunges as payrolls contract; duties and consumer 

losses remain in their usual range, so the overall gap deepens. Recovery in 2021 lifts the wage 

segment past both opposing segments, yielding the highest positive bar. Bars then shrink. From 

2023 forward, consumer losses outstrip combined positives, and the stack stays below zero 

despite rising duties. The figure makes plain that payroll strength, not tariff intake, determines 

the ledger’s sign once higher rates are in place. 

8.4 Dollars Per Job: Tariffs vs § 48C 

Section 8.4 turns from welfare to employment leverage. The same tariff duties that enter 

the ledger can be divided by the net rise in manufacturing payrolls to give a public cost per job. 

The exercise is repeated for the § 48C advanced-energy tax credit pool, a project-based incentive 

announced in 2024 – 2025 (U.S. Department of the Treasury, 2025). § 48C positions are reported 

as announcements rather than measured payrolls, so they form an upper bound. Dollar totals are 

nominal and expressed in 2025 terms to allow direct comparison. Jobs are in thousands, duties 

and allocations in billions. 

Table 9 

Cost per Manufacturing Job: U.S. Tariff Duties vs. § 48C Advanced-Energy Tax Credits, 2018 - 

2025 

Instrument 
Nominal dollars 

(billions)¹ 

Jobs 

(thousands)² 

Cost per job³ (billions USD / 

1000 jobs) 

Tariff duties (Sec. 232 

& 301) 
53.08 356 0.149 
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§ 48C tax-credit 

allocations 
10.00 1707 0.006 

Difference — — 0.143 

Note. Jobs created equal the net rise in average manufacturing payroll employment between 2017 

and 2025. § 48C dollars combine Round 1 (March 29, 2024) and Round 2 (January 10, 2025) 

allocations; jobs announced are cumulative manufacturing positions published by the Reshoring 

Initiative up to 2025 Q1. All dollar figures are nominal; values are 2025 $billions, and 

employment counts are in the thousands. Data based on calculations using information retrieved 

from USITC DataWeb, U.S. Department of Energy, Reshoring Initiative (2024), U.S. 

Department of the Treasury (2025), and BLS CES, accessed 9 June 2025. 

Table 9 shows a sharp gap in labor cost efficiency. Between 2018 and 2025, Customs 

collected $53.1 billion in duties, yet payrolls rose by only 356,000 positions, putting the implied 

public cost at $149,000 per job. By contrast, the combined $10 billion allocated under § 48C is 

linked to 1.707 million announced factory jobs, just $5,900 each. Even if only half of those 

promises become payroll lines, the credit would still deliver new workers at $11,800 a piece, 

twelve times cheaper than tariffs. The comparison indicates that project-screened capital 

subsidies stretches federal dollars further than broad trade taxes, even before accounting for the 

welfare losses tallied in the prior sections in the ledger above. 

The tariff numerator is cash that has already entered the Treasury, and the job 

denominator counts the average rise in manufacturing payrolls between 2017 and 2025. This 

approach grants tariffs the strongest plausible showing, since some of the employment growth 

almost surely comes from macro recovery and private supply-chain changes unrelated to import 

taxes. The § 48C measure is even more conservative, as the tax-credit pool is capped at $10 

billion yet plant-level announcements continue to arrive. Many § 48C projects will draw only a 

fraction of the 30% credit rate, so the pool may leverage more private capital than implied by the 

simple division shown in the table. That capital finances equipment and buildings as well as 

wages, which means the cost-per-job figure for § 48C already embeds an allowance for fixed 

investment alongside labor. 

If only half of the announced § 48C positions reach payroll status, the public outlay 

climbs to roughly $12 billion once credits are deflated to 2025 dollars, while the job count drops 
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to about 854k. The resulting $14k cost per job still beats the tariff figure by a factor of ten. A 

deeper attrition assumption would need almost a ninety-percent shortfall before the two 

instruments converge. The edge held by § 48C stems from its design: credits are awarded 

competitively to projects that promise specific head counts and verified capital spending, 

whereas tariffs tax every import regardless of downstream hiring. Overall, both devices aim to 

expand domestic manufacturing, yet their fiscal footprints differ sharply. The comparison 

suggests that if employment growth is the main yardstick, selective investment subsidies deliver 

more output for each public dollar than broad trade taxes. 

8.5 Robot Dividend Caveat  

Automation adjusts the welfare story at two margins. Robots lift hourly output, trimming 

unit labor cost. If producers pass even half of that saving on to buyers, the consumer-surplus loss 

estimated in Section 8.2 falls by roughly one-quarter. Yet higher productivity also means fewer 

hours per unit of output, so the wage-bill gain credited to tariffs could be smaller than reported. 

Recent plant surveys indicate that the modal reshoring project adds one robot for every two new 

operators, compared with one for every six operators in 2015. This shift raises value added per 

worker by about nine percent but caps net hiring. 

Payroll data confirms the pattern. From 2018 to 2024, robot density in U.S. 

manufacturing climbs from 223 to 302 units per 10,000 employees, while average real hourly 

earnings in the sector rose 9%. Price pass-through appears in producer-price indexes for tariff-

covered goods, which increase only half as fast as the statutory duty schedule. The ledger’s wage 

line therefore captures a benefit that is partly offset by consumer gains not recorded in the 

current framework. Moving those gains into the ledger would narrow the headline welfare loss 

but would not alter the broader conclusion: tariffs remain an expensive way to lift factory 

employment because automation channels much of the protection into capital deepening rather 

than head-count growth. 
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The robot dividend therefore moderates the consumer-surplus loss while trimming the 

employment boost. Any future welfare audit should integrate a productivity term so that 

automation’s dual effects of cheaper goods and leaner staffing appear on the same page as tariff 

transfers.  
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Chapter 9: Conclusion 

9.1 Revisiting the Research Question 

Chapter 1 opened with a claim often repeated in public debate: higher import tariffs will 

bring factory work back to the United States. The period from 2018 to 2025 provided a rare 

natural experiment. The Trump administration’s aggressive and unpredictable trade policies raise 

tariffs on key trading partners in an effort to revive domestic manufacturing. During the same 

interval the installed stock of industrial robots expanded sharply, reaching 302 units per 10,000 

manufacturing employees in 2023, more than double the level a decade earlier (Bill et al., 2024). 

The coincidence of aggressive trade protection and rapid automation creates tension: a tariff can 

shift production to domestic plants, yet a higher robot share may lower the labor content of any 

production that returns. This tension frames the central question investigated in the thesis: Does 

the escalation of U.S. manufacturing tariffs implemented between 2018 and 2025 deliver net 

gains in domestic manufacturing employment when industrial automation intensity is accounted 

for? 

The empirical chapters addressed this question with a quarterly sectoral panel from 

2004 Q1 to 2025 Q4, combining tariff schedules, robot-density data, and labor-force statistics. 

The analysis traced both the direct employment response to tariff changes and the interaction 

between tariffs and automation intensity, setting the stage for the findings discussed in the next 

sections. 

9.2 Core Findings 

Table 1 tracks 56 industrial groups from 2018 Q1 to 2025 Q4, shows that lifting the 

average tariff by 1 percentage point is linked to a 0.44-percentage-point drop in quarterly job 

growth. Raising the mean duty from 3% to 10% therefore lines up with a cumulative loss of 

roughly 320,000 jobs by the end of 2025. This negative association holds after controlling for 

sector-specific demand conditions, which suggests the downturn is not simply a byproduct of 

weaker product markets. 

The quarterly dynamics clarify why the aggregate effect turns out negative. 

Vector-autoregression impulse responses from Figure 6 reveal a brief hiring bump of about 

0.20 log points in the first quarter after a tariff shock, yet the gain fades within three years. At the 



64 

 

same time the robot-installation series dips for several quarters and then rebounds. The timing 

points to a behavioral story: firms may slow planned automation projects while trade barriers are 

fresh, secure a short-term rise in headcount, and return to capital deepening once policy signals 

settle. Because the rebound in automation offsets the early hiring, the initial uptick never matures 

into a lasting employment expansion. 

Automation intensity, measured as robots per 10,000 workers, explains which industries 

manage a temporary boost and which lose jobs outright. The interaction model in Table 3 

indicates that each additional one-percent increase in robot density cuts the marginal tariff effect 

by 0.01687 log points. When robot density sits in the bottom quartile, the tariff coefficient is 

slightly positive (+0.01 log points); when density moves into the top quartile, the coefficient 

turns much more negative. The implication is straightforward: tariffs can lift payrolls only where 

production remains labor-heavy, whereas highly automated lines respond by cutting workers 

even faster. 

Results differ across skill tiers in a way that fits this mechanism. Sector-level regressions 

disaggregated by occupational class Table 4 show modest gains for low-skill positions 

(+0.085 percentage points per tariff point), no clear response for mid-skill employment, and 

measurable losses for high-skill roles (-0.088 percentage points). Firms appear to trim 

engineering, programming, and maintenance staff when they reconfigure production, while 

retaining or adding a limited number of low-skill tasks that resist automation. The combined 

outcome keeps overall employment in the red despite the marginal gains at the lower end of the 

wage distribution. 

The national outlook looks less favorable when external benchmarks are added. A 

synthetic-control comparison that weights the EU-27 and Canada to match pre-2018 trends 

produces a counter-factual payroll series without a tariff shock. Figure 9 shows by 2025 Q4, U.S. 

manufacturing employment stands 2.1 percentage points below that counter-factual path, 

equivalent to about 260,000 missing jobs. Because donor economies recorded robot-growth rates 

like the United States (International Federation of Robotics, 2025), the shortfall is unlikely to 

stem from technology alone. 

Finally, the cost side reinforces the employment verdict. Chapter 8 estimates 

consumer-surplus losses of nearly $80 billion and wage-bill gain of roughly $18 billion, giving a 
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net welfare change of -$8 billion over the study window. Each job attributed to the tariff program 

costs the public purse about $149,000, more than ten times the per-job price tag under targeted 

§ 48C investment credits. 

The evidence from these models shows that the 2018-2025 escalation of U.S. tariffs did 

not yield net gains in domestic manufacturing employment once industrial automation is 

considered. Any early hiring proved transient, the sectors most exposed to robots sustained the 

largest losses, and the policy imposed a sizeable welfare bill on consumers. The next section 

situates these findings within the broader literature on trade protection and technological change. 

9.3 Contribution to Existing Work 

The results dialogue with two strands of scholarship that have shaped current thinking on 

factory jobs in advanced economies. Table 1 shows that a one-percentage-point rise in the 

average tariff trimmed U.S. manufacturing employment growth by 0.44 log points (p ≈ 0.06). 

That elasticity is virtually the same size as the China-import effect that Autor, Dorn and Hanson 

converted to payroll growth in their China-shock study (−0.45 log points) (D. Autor et al., 2021). 

In other words, tariffs reduce jobs by roughly the same amount that cheaper foreign competition 

once did. 

The interaction term of -1,687 (SE = 849) between tariff shifts and robot growth in Table 

3 confirms Acemoglu and Restrepo’s (2020) finding that automation tilts the labor response to 

trade shocks towards displacement rather than hiring, even when the shock is protectionist rather 

than competitive. Unlike earlier work that looks at China imports and robots separately, this 

thesis measures both forces in the same quarterly panel and shows that a 1% quarterly rise in 

robot density wipes out the modest hiring that a tariff triggers when automation is flat. 

 Earlier research treated trade shocks and robots as separate forces. This research shows 

that tariffs and robots are multiplicative, not additive: when robot adoption is flat, tariffs can still 

produce a small hiring increase; once capital deepening resumes at recent speeds, the 

employment path converges to the decline already traced under import competition. This joint 

result helps reconcile why headline reshoring announcements keep climbing while aggregate 

factory employment remains flat. 
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9.4 Policy Ledger Recap 

Table 9 puts the 2018-2025 tariff package at roughly $420,000 of public cost for each net 

manufacturing job once price pass-through and retaliation are counted. Section 48C’s 30% 

investment credit, by contrast, channels $6 billion of tax relief into about 250 projects and is 

expected to generate 30,000 on-site jobs, bringing the public outlay below $200,000 per job 

(U.S. Department of Energy, 2024; U.S. Department of the Treasury, 2025). Historical evidence 

points the same way: the 2018 steel and aluminum duties cost about $650,000 per job saved 

(Durante, 2022). The ledger therefore points toward investment credits or similar targeted tools 

when the goal is employment at minimum fiscal cost. 

The tariff × robot interaction in Table 3 and its slope in Figure 9 show that the small 

hiring uptick from a duty rise vanishes once robot density increases above the median growth 

rate. The United States already stands at 295 robots per 10,000 manufacturing workers and is 

expanding that stock by about 5% a year (Bill et al., 2024). Ignoring this trend may harm labor 

outcomes. Future trade measures should therefore be drafted alongside metrics on automation 

and paired with reskilling or transition support; otherwise, rising capital intensity will offset the 

intended employment gains. 

9.5 Future Research 

A natural next step is to trace how tariff-automation shocks work through different kinds 

of workers rather than through average headcounts. Matching the sector-level exposure variables 

used here with individual employment histories from would allow a triple-difference design that 

separates effects by education, age and union status. The approach could test whether the 

negative tariff × robot interaction in Table 3 is driven primarily by routine-task occupations, as 

suggested by Acemoglu and Restrepo’s task model (2020), or whether displacement reaches 

further up the skill ladder. Linking worker-level earnings would also show whether any job 

preservation comes at the cost of lower wages, an open question in the emerging reshoring 

literature (Bals et al., 2015). 

A second idea combines tariffs with real-effective-exchange-rate movements. Exchange-

rate swings alter import prices more gradually than statutory duties, and firms often regard them 

as temporary (Goldberg & Tracy, 2003). Estimating a model that interacts tariffs, robot growth 

and the dollar’s real effective rate would separate pure cost effects from demand reallocation and 
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reveal whether automation dampens or amplifies exchange-rate pass-through. Quarterly currency 

data from the Federal Reserve can be merged directly with the tariff and robot series already 

assembled, so the extension would fit within the current identification strategy without additional 

measurement error. 

9.6 Closing Remark 

In an era of rapid automation, tariffs reduce manufacturing jobs. By estimating both 

forces in one model, this thesis unites the import-competition lens of Autor, Dorn and Hanson 

(2013) with the automation lens of Acemoglu and Restrepo (2020), showing that duties lose their 

job-saving power once capital deepening resumes. Trade policy that truly aims to protect 

employment must therefore reach inside the factory, not just across the border, and confront the 

speed at which machines replace tasks. 
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Appendix A 

Table A1 

Trump-Era Trade and Reshoring Policy Timeline, 2018 - 2025 

# 
Date (in-

force*) 

Measure 

type 

Sector / 

scope 

One-sentence 

description 

FR / Procl. / EO 

ID 

Tariff 

? 

1 3/8/2018 

Sec 232 

tariff - 

Procl 9705 

Steel 

25 % ad-

valorem duty on 

most imported 

steel articles. 

83 FR 11625, FR 

Doc 2018-05478 

(federalregister.gov)  

✓ 

2 3/8/2018 

Sec 232 

tariff - 

Procl 9704 

Aluminum 

10 % duty on 

most imported 

aluminum 

articles. 

83 FR 11619, FR 

Doc 2018-05477 

(federalregister.gov)  

✓ 

3 7/6/2018 

Sec 301 

tariff - List 

1 

≈ $34 bn 

Chinese 

goods 

25 % duty on 

818 HTS lines 

after tech-

transfer finding. 

83 FR 40823, FR 

Doc 2018-17709 

(federalregister.gov)  

✓ 

4 9/24/2018 

Sec 301 

tariff - List 

3 

≈ $200 bn 

Chinese 

goods 

10 % (later 25 

%) duty on 5 

745 lines 

covering 

consumer & 

intermediate 

goods. 

83 FR 47974, FR 

Doc 2018-20610 

(federalregister.gov)  

✓ 

5 5/19/2019 

Sec 232 

mod. - Procl 

9894 

Steel (CA & 

MX) 

Removes 25 % 

steel duty for 

USMCA 

partners, adds 

monitoring. 

84 FR 23987, FR 

Doc 2019-11002 

(federalregister.gov)  

✓ 

6 1/24/2020 

Sec 232 

tariff - 

Procl 9980 

Derivative 

steel & 

aluminum 

Extends 25 

%/10 % tariffs 

to nails, wire, 

cables and other 

downstream 

items. 

85 FR 5281, FR 

Doc 2020-01806 

(federalregister.gov)  

✓ 

7 2/14/2020 
Sec 301 

tariff cut 

Consumer 

(List 4A) 

Phase-One deal 

halves List 4A 

duty from 15 % 

to 7.5 %. 

85 FR 3741, FR 

Doc 2020-00904 

(federalregister.gov)  

✓ 
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8 7/1/2020 

USMCA 

entry into 

force 

Autos & 

cross-sector 

NAFTA 

replaced; new 

rules-of-origin 

& labor-value 

thresholds start. 

85 FR 39690, FR 

Doc 2020-13865 

(federalregister.gov)  

— 

9 1/25/2021 

EO 14005 

“Buy 

American” 

Federal 

procurement 

Raises 

domestic-

content 

thresholds; 

creates Made-

in-America 

Office. 

86 FR 7475, FR 

Doc 2021-02038 

(federalregister.gov)  

— 

10 
2024-12-

27 (†) 

TD 10010 

— §45X 

regs 

Clean-

energy mfg. 

Final rules for 

advanced-

manufacturing 

credit (up to 

$0.45/W). 

89 FR 85798, FR 

Doc 2024-24840 

(federalregister.gov)  

— 

11 4/2/2025 

EO 14257 

“Reciprocal 

Tariff” 

All imports 

Establishes 10 

% baseline tariff 

plus higher, 

partner-specific 

rates. 

90 FR 15041, FR 

Doc 2025-06063 

(federalregister.gov)  

✓ 

12 5/12/2025 
EO 14298 

Tariff mod. 

China (and 

baseline) 

Lowers China’s 

rate to 10 %; 

opens 90-day 

negotiation 

window. 

90 FR 21831, FR 

Doc 2025-09297 

(federalregister.gov)  

✓ 

Note. Dates are the entry-into-force values used as timing variables in econometric “shock” 

analysis. ✓ indicates the policy imposed, reinstated, or raised at least one import duty; — 

indicates no new tariff liability; ≈ denotes an approximate value. Data based on the author’s 

compilation of Federal Register notices, presidential proclamations, and executive orders. 
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Table A2 

Variable dictionary - all series appearing in any thesis figure, table, or regression 

Variable Description Unit 
Freq.

* 
Source Notes 

delta_lnjobs 

Log change in total 

manufacturing 

employment 

log 

pts 

M / Q 

/ A 

BLS CES; 

FRED, OECD, 

author calc. 

Seasonally 

adjusted 

ln_jobs 
Log manufacturing 

employment level 
ln 

M / Q 

/ A 

BLS CES; 

FRED, OECD, 

author calc. 

Seasonally 

adjusted 

tariff_rate 

Effective tariff rate 

on world imports 

(duties ÷ customs 

value) 

% 
M / Q 

/ A 

USITC 

DataWeb; 

author 

Used in 

Figure 4 

tariff_rate_mexico 
Effective tariff rate 

on Mexican imports 
% 

M / Q 

/ A 

USITC 

DataWeb; 

author 

Used in 

Appendix B, 

Figure B1 

tariff_rate_canada 
Effective tariff rate 

on Canadian imports 
% 

M / Q 

/ A 

USITC 

DataWeb; 

author 

Used in 

Appendix B, 

Figure B1 

tariff_rate_china 
Effective tariff rate 

on Chinese imports 
% 

M / Q 

/ A 

USITC 

DataWeb; 

author 

Used in 

Figure 4 

delta_tariffrate 
Ppt change in world 

tariff rate 
pp 

M / Q 

/ A 

USITC 

DataWeb; 

author 

Main tariff 

regressor 

delta_tariffrate_china 
Ppt change in China 

tariff rate 
pp 

M / Q 

/ A 

USITC 

DataWeb; 

author 

Robustness 

check 

ln_tariff_rate Log world tariff rate ln 
M / Q 

/ A 

USITC 

DataWeb; 

author 

VAR IRF 

ln_robot_stock 

Log operational 

robots in U.S. 

manufacturing 

ln Q / A 
IFR World 

Robotics 
— 

delta_ln_robot_stock 
Log change in U.S. 

robot stock 

log 

pts 
Q / A IFR; author — 

robot_density 

Robots per 10k 

manufacturing 

workers 

robot

s 
Q / A 

IFR × BLS 

CES; author 

Used in 

Figure 3 

delta_ln_robot_plant

share 

Log change in 

robots per worker 

log 

pts 
Q / A 

IFR × BLS 

QCEW; author 

Plant-

weighted 



81 

 

robot_installations 
Annual new robot 

installations (U.S.) 
units A IFR press data 

Used in 

Figure 8 

global_robot_stock 
Global operational 

industrial robots 
units A IFR slides — 

ln_indpro 

Log industrial-

production index 

(2017 = 100) 

log 

idx 

M / Q 

/ A 
FRED 

Seasonally 

adjusted 

unrate 
Civilian 

unemployment rate 
% 

M / Q 

/ A 
FRED 

Seasonally 

adjusted 

pandemic_dums 

COVID-19 

indicators (2020 Q2-

Q4) 

0/1 Q Author 
Parallel-

trend check 

treat_dummy 
Pre-2010 tariff-

eligibility dummy 
0/1 Q Author 

Used in 

Figure 5 

delta_ln_exports_CN 
Log change in 

exports to China 

log 

pts 

M / Q 

/ A 

BEA ITG; 

author 

Deflated, 

Seasonally 

adjusted 

delta_ln_exports_RO

W 

Log change in 

exports to rest of 

world besides china 

log 

pts 

M / Q 

/ A 

BEA ITG; 

author 
— 

sme_share 

Employment share 

in firms < 250 

workers 

% Q BLS QCEW appendix 

union_density 

Union members ÷ 

manufacturing 

employment 

% A 

Hirsch & 

Macpherson 

UnionStats 

Quarterly 

spline 

low_skill_share 

Share of low-skill 

jobs in 

manufacturing 

% A 

BLS OEWS × 

O*NET; 

author 

Appendix B, 

Figure B3 

middle_skill_share 

Share of middle-

skill jobs in 

manufacturing 

% A 

BLS OEWS × 

O*NET; 

author 

Appendix B, 

Figure B4 

high_skill_share 

Share of high-skill 

jobs in 

manufacturing 

% A 

BLS OEWS × 

O*NET; 

author 

Used in 

Figure 7 

automation_risk_shar

e 

Jobs at high 

automation risk 
% A 

OECD PIAAC 

2021 

Used in 

Figure 10  

job_growth 
10-yr manufacturing 

job growth 
% A 

UNIDO 

INDSTAT; 

author 

Used in 

Figure 10 

duties 

Annual tariff 

revenue (calculated 

duties) 

USD 

bn 
A 

USITC 

DataWeb 

Used in 

Table 8 

consumer_surplus_lo

ss 

Estimated consumer 

surplus loss 

USD 

bn 
A Author calc. ε = -1.5 
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wage_bill_change 

Manufacturing 

wage-bill change vs 

2017 

USD 

bn 
A 

BLS CES; 

author 

Used in 

Table 8 

total_48C_$ 
§48C credit awards 

(cumulative) 

USD 

bn 
A 

IRS §48C 

release 

Used in 

Table 9 

jobs_announced 
Jobs announced in 

§48C filings 
jobs A 

Reshoring 

Initiative 

Used in 

Table 9 

jobs_created 
Estimated jobs 

created by tariffs 
jobs A Author calc. 

Used in 

Table 9 

Note. Descriptions are ≤ 20 words. Monetary series (duties, consumer surplus, wage-bill gain, 

§48C awards) are deflated to 2025 USD. All other series follow the units listed.  

* Frequency codes: M = monthly, Q = quarterly, A = annual (all stored versions). 
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Table A3 

International survey of causal β estimates of industrial-robot exposure on employment 

Author(s) & 

year 

Country / 

sample & 

period 

Outcome 

measure 

β (impact of +1 

robot / 1 000 

workers unless 

noted) 

Identification 

strategy (1-liner) 

Graetz & 

Michaels 

(2018) 

17 OECD 

economies, 

1993-2007 

Total hours 

worked 
≈ 0.00 (ns) 

Panel FE with 

robot-density IV 

Dauth, 

Findeisen, 

Südekum & 

Wößner 

(2021) 

German local 

labour 

markets, 

1994-2014 

Manufacturing 

vs. service jobs 

-2 manufacturing 

& +2 service jobs 

⇒ net 0 per robot 

Local Bartik (shift-

share) IV + worker 

panel 

Chiacchio, 

Petropoulos & 

Pichler (2018) 

EU-15 

NUTS-2 

regions, 

1995-2007 

Employment-to-

population ratio 
-0.16 to -0.20 pp 

Region × industry 

FE panel with 

robot-diffusion IV 

Chung & Lee 

(2023)* 

722 

commuting 

zones, 2005-

2016 

Employment 

level 
+13 to +16 jobs 

Dynamic panel + 

shift-share IV 

Acemoglu & 

Restrepo 

(2020) 

U.S. 

commuting 

zones, 1990-

2007 

Employment-to-

population ratio 
-0.20 to -0.34 pp 

Shift-share IV 

(local robot 

exposure) 

Zierahn, 

Gregory & 

Arntz (2016) 

EU-27, 1999-

2010 

Aggregate 

employment 

+11.6 million jobs 

(≈ +0.5 pp††) 

Structural 

decomposition of 

routine-reducing 

tech & demand 

spill-overs 

Note. β shows the change in the stated outcome when robot density rises by one unit per 1,000 

workers, unless noted. “pp” = percentage-point; “ns” = not statistically significant. Chung & Lee 

find a negative effect in 2005-10 that becomes positive by 2016; the range shown is the full-

period net result. † Jobs divided by the 2010 EU workforce (~233 million) to give an 

approximate percentage-point change. Reproduced from Graetz and Michaels (2018); Dauth et 

al. (2021); Chiacchio et al. (2018); Chung and Lee (2023); and Acemoglu and Restrepo (2020). 

Calculations are based on this reproduced data.                   
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Table A4 

Effect of Tariff-Rate Changes on Manufacturing-Employment Growth, 2007 - 2024 

Variable Low-Skill β (SE) Middle-Skill β (SE) High-Skill β (SE) 

Intercept -5.67 (1.53) -3.24 (1.44) -2.57 (0.95) 

Δ Tariff rate 10.69 (8.89) 1.61 (4.67) -6.91 (7.49) 

ln Industrial production 1.21 (0.32) 0.70 (0.31) 0.56 (0.20) 

Unemployment rate 0.02 (0.01) 0.01 (0.01) 0.00 (0.01) 

Pandemic dummy -0.03 (0.01) -0.05 (0.02) 0.01 (0.05) 

N 18 18 18 

Note. Ordinary least-squares coefficients are shown with Newey-West HAC(1) standard errors in 

parentheses. Skill groups are derived from O*NET Job Zones—low = 1-2, middle = 3, high = 4-

5—and merged with U.S. Bureau of Labor Statistics Occupational Employment and Wage 

Statistics. The pandemic dummy equals 1 in 2020 and the fraction of COVID-affected quarters in 

2021 and 2022. Data based on calculations using information retrieved from USITC DataWeb, 

FRED INDPRO, FRED UNRATE, BLS CES, O*NET, and BLS QCEW, accessed 9 June 2025. 

*Coefficients are on a ×100 scale and include interaction terms; direct comparison with Table 1 

is not valid. 
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Table A5 

Effect of Tariff-Rate Changes on Manufacturing-Employment Growth, 2015 - 2024 

Variable Low-Skill β (SE) Middle-Skill β (SE) High-Skill β (SE) 

Intercept -12.16 (12.05) -2.69 (3.52) -4.15 (5.99) 

Δ Tariff rate 4.95 (10.37) -0.88 (3.96) -9.37 (8.22) 

ln Industrial production 2.61 (2.57) 0.59 (0.75) 0.90 (1.27) 

Unemployment rate 0.03 (0.05) -0.01 (0.02) -0.00 (0.04) 

Pandemic dummy 0.03 (0.14) 0.01 (0.05) 0.05 (0.13) 

N 10 10 10 

Note. Sample covers 2015–2024. Ordinary least-squares coefficients appear with Newey–West 

heteroscedasticity- and autocorrelation-consistent (HAC 1) standard errors in parentheses. Data 

based on calculations using information retrieved from USITC DataWeb, FRED INDPRO, 

FRED UNRATE, BLS CES, O*NET, and BLS QCEW, accessed 9 June 2025. 

*Coefficients are on a ×100 scale and include interaction terms; direct comparison with Table 1 

is not valid. 
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Table A6 

Tariff Changes, Industrial Robots, and SME Employment Share — Quarterly OLS Estimates, 

2007 Q2 - 2025 Q2 (HAC-6 Standard Errors) 

Variable b Sig SE 

Intercept -4.10 *** 1.28 

Δ Tariff rate 102.96  102.27 

Δ ln Robots 80.32 * 41.72 

SME share 3.74 *** 1.44 

Δ Tariff × Δ Robots -8587.87  8625.63 

SME × Δ Tariff -189.60  189.90 

SME × Δ Robots -11795.88  6542.28 

SME × Δ Tariff × Δ Robots 15822.34  16042.96 

ln Industrial production 0.46 *** 0.12 

Unemployment rate 0.00  0.00 

COVID-19 dummy (2020 Q2-Q4) 0.03 ** 0.01 

N 71   
R² 0.57     

Note. The dependent variable is the quarterly change in log manufacturing employment, Δ ln 

jobs. All continuous predictors are first-differenced. SME share (small- and medium-sized 

enterprise) is forward filled from Q1 values; the COVID-19 dummy equals 1 in 2020 Q2–Q4. 

Coefficients (b) are estimated by ordinary least squares; HAC 6 standard errors appear in the SE 

column. Data based on calculations using information retrieved from USITC DataWeb, IFR 

World Robotics, BLS QCEW, FRED INDPRO, and FRED UNRATE, accessed 9 June 2025. 

Appendix Table A6 extends the baseline first-difference HAC-OLS by introducing a 

three-way interaction between the tariff change, the change in log robot stock and the 

small- and-medium-enterprise employment share. The model retains the industrial production, 

unemployment and COVID-19 controls and applies the same six-lag Newey–West covariance 

and Cumby–Huizinga serial-correlation check; the extra term tests whether smaller 

establishments experience a distinct combined response to protection and automation. 
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Appendix B 

Figure B1 

Effective U.S. tariff rates on Chinese, Canada, Mexico, and World-Aggregated Imports, 2018 

Q1-2025 Q2 

 

Note. Duty-to-customs-value ratios. Quarterly observations; shaded vertical line in 2025 Q2 

marks the policy reset. Data based on calculations using information retrieved from USITC 

DataWeb, accessed 9 June 2025. 
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Figure B2 

Gap in log manufacturing employment between the United States and its synthetic EU + Canada 

control, 2005 - 2023 

 

Note. The synthetic series is a fixed convex combination of the EU-27 aggregate (weight = 

0.612) and Canada (weight = 0.388), chosen to match U.S. pre-2018 averages of log 

manufacturing employment, log industrial-robot stock, and log applied tariff openness. The 

dashed vertical line marks 2018, the first year affected by the renewed U.S. tariff program. 

Positive values indicate U.S. employment outperforming the counter-factual. Data based on 

calculations using information retrieved from OECD Data Explorer, BLS CES, USITC DataWeb, 

IFR World Robotics, World Bank WITS, accessed 9 June 2025. 
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Figure B3 

Robot density and low-skill employment share in U.S. manufacturing, 2005 - 2024 

 

Note. Each ✕ represents one calendar year (2005 - 2024); only 2005, 2010, 2015, 2020, and 

2024 are labeled for clarity. The yellow line is an ordinary-least-squares fit (β = −0.050 

percentage points per additional robot per 10,000 workers; R² = .66). Robot density equals 

operational industrial robots per 10,000 production workers; the low-skill share is the proportion 

of manufacturing employment in elementary and operator occupations. Data based on 

calculations using information retrieved from IFR World Robotics, BLS CES, O*NET, and BLS 

QCEW, accessed 9 June 2025. 
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Figure B4 

Robot density and middle-skill employment share in U.S. manufacturing, 2005 - 2024 

 

Note. Each ✕ represents one calendar year (2005 - 2024); to keep the figure readable, only 2005, 

2010, 2015, 2020, and 2024 are labeled. The yellow line plots an ordinary-least-squares fit (β = 

0.010 percentage points per additional robot per 10,000 workers; R² = .60). Robot density is 

operational industrial robots per 10,000 production workers; the middle-skill share combines 

technicians, clerical, craft, and machine-operator occupations. Data based on calculations using 

information retrieved from IFR World Robotics, BLS CES, O*NET, and BLS QCEW, accessed 9 

June 2025. 
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Figure B5 

Tariff-Shock Impulse Responses for High-Union and Right-to-Work State Panels 

 

Note. Lines plot the response of log manufacturing employment (Δ ln jobs) to a one-standard-

deviation increase in the log tariff rate (σ ≈ 0.0063). Estimates come from annual VAR(2) models 

fitted to 2007-2024 state-level data; shaded regions are 95% Monte-Carlo confidence bands 

based on 1,000 replications. The horizontal axis is annual, with tick marks are displayed every 

two years. Impulses are generalised. Data based on calculations using information retrieved from 

USITC DataWeb, BLS OEWS, and UnionStats (Hirsch et al., 2025), accessed 9 June 2025. 

Appendix Figure B5 estimates separate state-level VAR(2) systems for right-to-work and 

high-union states and traces generalized impulse responses to a one-standard-deviation tariff 

shock with 500 bootstrap confidence bands, following the Pesaran and Shin (1998) algorithm. 

The split illustrates how collective-bargaining arrangements influence the speed at which 

employment returns to baseline. 

 

 


